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ABSTRACT
This is an introductory book about nonlinear waves. It focuses on two properties that various
different wave phenomena have in common, the “nonlinearity” and “dispersion”, and explains
them in a style that is easy to understand for first-time students.

Both of these properties have important effects on wave phenomena. Nonlinearity, for ex-
ample, makes the wave lean forward and leads to wave breaking, or enables waves with different
wavenumber and frequency to interact with each other and exchange their energies.

Dispersion, for example, sorts irregular waves containing various wavelengths into gentler
wavetrains with almost uniform wavelengths as they propagate, or cause a difference between
the propagation speeds of the wave waveform and the wave energy.

Many phenomena are introduced and explained using water waves as an example, but this
is just a tool to make it easier to draw physical images. Most of the phenomena introduced in
this book are common to all nonlinear and dispersive waves.

This book focuses on understanding the physical aspects of wave phenomena, and requires
very little mathematical knowledge. The necessary minimum knowledges about Fourier analysis,
perturbation method, dimensional analysis, the governing equations of water waves, etc. are
provided in the text and appendices, so even second- or third-year undergraduate students will be
able to fully understand the contents of the book and enjoy the fan of nonlinear wave phenomena
without relying on other books.

KEYWORDS
nonlinear wave, dispersive wave, water wave, soliton, modulated wavetrain, wave-
wave interaction, wave turbulence
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Preface
This is an introductory book about nonlinear waves. We humans are living surrounded by various
wave phenomena. Sounds of people talking and birds singing are the sound waves transmitted
through the air. The energy from the sun and TV programs from broadcasting stations are
delivered by electromagnetic waves. If a strong wind blows over the sea surface, water waves are
generated and travel thousands of kilometers as swells. The wave phenomena play important
roles from our daily life to longer-term global environmental changes.

This book focuses on two properties that many of such diverse wave phenomena have
in common, the “nonlinearity” and “dispersion”, and explains them in a style that is easy to
understand for the first-time students.

“Linear” is a term that means direct proportion, and thus “nonlinear” literally means out
of proportion. For example, we learn in high school physics that the force to pull a spring and the
extension of the spring are proportional, i.e., the familiar Hooke’s law. This may be correct while
the force is weak. However, it is also a well-known fact that the relation between the two deviates
from direct proportion when the force and the resultant extension of the spring get larger. The
same is true for the familiar Ohm’s law V D RI of electricity. This may also be correct while
the electric current I is weak. However, if the current becomes larger, the temperature of the
resister will rise due to the generated Joule heat, and as a result, the resistance R would increase.
If this effect is included, R becomes a function of I , so the voltage V can no longer be in direct
proportion to I . Thus, “nonlinearity” is ubiquitous and exists everywhere in our surroundings.
With respect to wave phenomena, the nonlinearity plays various important roles that can not be
captured within the linear framework, such as deforming the waveform with wave propagation,
enabling energy exchange between waves with different frequencies, and so on.

Another keyword that is important throughout this book is “dispersion” of waves. Dis-
persion is the property that the wave travels at different speeds depending on the wavelength or
frequency. Sound waves and light (electromagnetic waves) do not have dispersion. When asked,
“What is the speed of light?”, most people would immediately answer “300,000 km/s” or “seven
and a half lap of earth in one second”. Also, if asked “What is the speed of sound?”, many people
would answer “about 340 m/s”. In these cases, any conditions such as “light of what color” or
“sound of what Hz” are not appended. This is because the speed of these waves do not depend
on frequency or wavelength.

Then how about if you are asked “What is the speed of water waves?” You can see the
waves on the water surface on a daily basis, in the bathtub, on the river, etc. In the sense that
it is visible, the water wave is more familiar than light or sound. However, most people do
not know how fast its speed is. In fact, water wave is a dispersive wave, and its speed depends



xiv PREFACE
largely on wavelength. While the tsunami which travels through the Pacific Ocean is as fast
as 200 m/s (over 700 km/h), the waves in the bathtub are less than 1 m/s. Waves that do not
have dispersion like sound waves and electromagnetic waves are rather exceptional, and many
waves around us have dispersion like water waves. This dispersion also brings about complex and
interesting properties to wave phenomenon, as introduced in Chapter 3 as well as in subsequent
chapters. Richard Feynman takes up the water wave as an example of wave phenomena following
light and sound waves in his famous physics course.1 There, with the dispersive nature of water
wave in mind, he states: “water waves are the worst possible example, because they are in no
respects like sound and lights; they have all the complications that waves can have.”

In this book, I will introduce in an easy-to-understand manner various intriguing wave
phenomena that “nonlinearity” and “dispersion” produce and the physical mechanisms underly-
ing them. In many cases, they are described in the context of water waves. However, it should be
noted that the water wave is used only to facilitate understanding of the mechanism behind each
phenomenon and building concrete physical images, and most of the phenomena covered in this
book are common in many different kinds of waves that have both nonlinearity and dispersion.

There are two techniques that are often used throughout the book. It is “dimensional
analysis” and “perturbation method.” These are highly versatile and important analysis methods
used in a wide range of research fields, not limited to wave studies. For those readers who have not
learned these subjects, perturbation method is described in somewhat detail in Chapter 4, and
the basics of dimensional analysis is described in Appendix E. I have also prepared Appendix D
where a brief review on minimum knowledge of fluid mechanics and the derivation method of
the governing equations for water surface waves are given for the readers who are not familiar
with fluid mechanics. With the help of these chapters and appendices, I believe that the reader
can fully understand the contents of this book and enjoy the fan of nonlinear wave phenomena
without relying on other books if he or she has elementary knowledge of partial differentiation
and the Fourier analysis, and a little willingness to learn.

Mitsuhiro Tanaka
Gifu, Japan, November 2019

1Feynman, R, Leighton, R. and Sands, M.: The Feynman Lectures on Physics, (Addison-Wesley, Basic Books, 1964)
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C H A P T E R 1

The Simplest Nonlinear Wave
Equation

In this chapter, we will explain about what is “wave” and what is the simplest
equation to describe it, how to solve the equation to predict the waveform at later
times, what kind of effects the “nonlinearity” produces, and so on.

1.1 THE SIMPLEST WAVE EQUATION

What would you answer if you are asked, “What is a wave?” Of course, there may be various
ways to answer. In this book, we will call the phenomenon a “wave” in which any change of
some observable quantity that occurs at a certain point is transmitted to a spatially separated
place with time. According to this definition, the “wave” that travels through the audience of a
stadium that you see in heated games of baseball or football is literally a wave phenomenon.

If we think of wave in this sense, the most ideal wave would be that a signal (waveform)
travels at a constant speed c without changing its shape. Let f .x; t/ denote the value of a physical
quantity (for example, the head height of the audience in the case of the “waves” going around
the stadium) at the location x and the time t . Then, in such an ideal wave, the waveform f .x; t/

at an arbitrary later time t is simply given by the translation of the initial waveform F.x/ by ct ,
that is, f .x; t/ D F.x � ct/, as shown in Fig. 1.1.

Initial Waveform F (x)
Waveform at t

f (x,t) = F(x – ct)

Translation by ct

Figure 1.1: Simple tanslation without changing the waveform.

What would be the simplest mathematical formula that expresses this simple translation
at a constant speed without a change of form? If x � ct is written as �, f .x; t/ D F.�/, that is,
f .x; t/ is a function of � only, and depends on x and t only through �. Then according to the
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chain rule of partial differentiation,

@f

@t
D
dF

d�

@�

@t
D �c

dF

d�
;

@f

@x
D
dF

d�

@�

@x
D
dF

d�
: (1.1)

Therefore, when the functionf .x; t/ translates at a speed c, f .x; t/ satisfies the Partial Differ-
ential Equation (written as PDE for short)

@f

@t
C c

@f

@x
D 0; (1.2)

no matter what the shape of the waveform F.�/ is. Thus, Eq. (1.2) is the simplest PDE that
expresses the typical wave phenomenon that a signal travels in the x direction with a velocity c
without changing the waveform. If you see the operator @

@t
C c @

@x
, you can automatically think

of it as an operator that expresses the simple translation with a speed c.
It should be noted that since a wave is a phenomenon in which a change in a physical

quantity f that occurs at a certain place x is transmitted to another place with time t , f must
be a multi-variable function, denoted as f .x; t/.1 In addition, what is important in wave phe-
nomenon is the change (or derivative) of f .x; t/ that accompanies the arrival and passage of
wave, and thus, if the wave phenomenon is expressed in terms of mathematical expressions, the
differential equation for a multivariable function, or PDE, inevitably appears.

By the way, most of the physical quantities around us have “dimensions,” such as the
dimension of “length” and the dimension of “mass.” And, as a question such as “Which is heavier,
1m or 1 kg?” is nonsense, we cannot compare, add, or subtract quantities of different dimensions.
In the case of Eq. (1.2), denoting the dimensions of time and length by T and L, respectively,
and the dimensions of c and f by Œc� and Œf �, respectively, then the dimensions of the first and
the second terms on left side are Œf �=T and Œc�Œf �=L, respectively. Then in order for these two
terms to have the same dimension, the dimension Œc� must be L=T . That is, when there is an
operator @

@t
C c @

@x
, the coefficient c before the spatial derivative @

@x
is always a quantity with the

dimension of “velocity.”
For more detailed discussions on dimensions and the method of dimensional analysis,

refer to Appendix F of this book.

1.2 FROM CONSERVATION LAW TO WAVE EQUATION
1.2.1 CONSERVATION LAW
As mentioned in the Preface, there are a lot of wave phenomena around us. This implies that
there are many phenomena that are approximately expressed by an equation like (1.2) occurring
everywhere. One of the typical routes that an equation like (1.2) appears is the combination of
a conservation law and a constitutive equation (or an equation of state). The laws that govern

1When considering waves in the more general 3D xyz space, we need to treat functions of four independent variables like
f .x; y; z; t/.
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almost all motions and phenomena in the world, from the atomic scale to the scale of the uni-
verse, are conservation laws, such as conservation laws of mass, momentum, energy, etc. In the
following, we will explain the concept of the conservation law for continuous media, using the
flow of electricity in a wire as shown in Fig. 1.2 as an example.

Inflow q(a) Outflow q(a)
Amount of Charge

   ρ(x, t) dx
   b

a

a b

Figure 1.2: Flow of charge in a wire.

The charge is conserved. In other words, it does not suddenly appear from nowhere or
disappear in the empty sky. Focusing on a particular section of the wire, the amount of charge
present there may not be constant but increase or decrease with time. But it is simply because
the charge flows into or out of the section through the ends of the section. When we consider
the equation that the charge distribution along the wire should follow, the important physical
quantities to consider are the density of charge �.x; t/[C/m] and the flux of charge q.x; t/[C/s],
where m is meter, s is second, and C is coulomb. The flux of charge q.x; t/ represents the amount
of charge that passes the point of interest x per 1 s in the positive x direction.2

Now, focusing on an arbitrary section a � x � b of a wire, consider the change in
the amount of charge contained in this section during a very short time �t . The amount

of charge contained in this section at times t and t C�t are given by
Z b

a

�.x; t/ dx andZ b

a

�.x; t C�t/ dx, respectively, thus the increment during �t is given byZ b

a

Œ�.x; t C�t/ � �.x; t/� dx: (1.3)

On the other hand, the amount of charge flowing into this part through x D a and that flowing
out at x D b are q.a; t/�t and q.b; t/�t , respectively, so the net inflow during �t is given by

Œq.a; t/ � q.b; t/��t: (1.4)

Here, we assume that �t is a very short time interval. Otherwise, the inflow over �t must be

written as an integral as
Z tC�t

t

q.a; t 0/ dt 0. That is, the meaning that “�t is very short” means
that it is very short compared to the time interval in which q and � change significantly. When
using words such as “small,” “short,” etc., it is always necessary to be aware of what they are
compared with.

2The flux of charge is nothing but the current. The definition of 1 ampere [A] is 1[C/s].
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The conservation law of charge requires that the increment of charge (1.3) is equal to the

net inflow (1.4), that is:Z b

a

Œ�.x; t C�t/ � �.x; t/� dx D Œq.a; t/ � q.b; t/��t: (1.5)

Dividing both sides by �t , taking the limit of �t ! 0, and considering the definition of partial
derivative

lim
�t!0

�.x; t C�t/ � �.x; t/

�t
D
@�.x; t/

@t
; (1.6)

yields Z b

a

@�

@t
dx D q.a; t/ � q.b; t/: (1.7)

If we write the right side by an integral as

q.a; t/ � q.b; t/ D �

Z b

a

@q

@x
dx; (1.8)

and put it on the left side, we get Z b

a

�
@�

@t
C
@q

@x

�
dx D 0: (1.9)

Since the interval of interest Œa; b� is arbitrary, and this integral must always be 0 regardless of a
and b. From this, the equation

@�.x; t/

@t
C
@q.x; t/

@x
D 0 (1.10)

should hold everywhere.
In the above, we talked about the flow of charge in a wire as an example. However, as

understood from the derivation process, if a certain physical quantity (with unit
J

) is conserved,
the relationship of the equation (1.10) always holds between its line density �.x; t/[

J
/m] and

its flux q.x; t/[
J

/s]. In the more general 3D case, the 3D conservational PDE of the form

@�

@t
Cr � q D 0; (1.11)

holds between the density �.x; t / Œ
J
=m3� and the flux vector q.x; t / Œ

J
=m2=s�. Here, r � q is

a quantity called “the divergence of vector q.” (For more detail, see Appendix A.)
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1.2.2 FROM CONSERVATION LAW TO WAVE EQUATION
The conservation equation (1.10) contains two unknowns: the density �.x; t/ and the flux q.x; t/.
In this situation, the number of equation is insufficient, and it is impossible to trace the temporal
evolution of �.x; t/ even if the initial distribution is specified.3 There are two typical ways of
solving this problem as follows:

1. deriving a new equation @q
@t
D g.�; q/ describing the time evolution of q.x; t/ from some

physical law such as other conservation law, and construct a “closed” initial value problem;
and

2. deriving an algebraic relation q D q.�/ that relates � and q from some rule or observation
result. Such relation is called the equation of state or the constitutive law.4

In the latter case, substituting the equation of state q D q.�/ in (1.10) immediately gives
a wave equation like (1.2) as follows:

.1:10/ �!
@�

@t
C c.�/

@�

@x
D 0; where c.�/ �

dq.�/

d�
: (1.12)

As a simple example of such a problem that can be reduced to a wave equation (1.2) by
combining the conservation law and the equation of state, let us introduce a simple model of
traffic flow below.

1.2.3 SIMPLE MODEL OF TRAFFIC FLOW
For a one-lane road with no merging or branching as shown in Fig. 1.3, consider how the density
of cars changes with space and time. The density and flux of cars are denoted by �.x; t/ [cars/km]
and q.x; t/[cars/h], respectively.5

If there are no branches of roads, the number of cars on the road is a conserved amount,
and the conservation equation (1.10) holds between � and q. Also, if we write the speed at which
the car runs as v.x; t/ [km/h], q D �v holds, then by substituting this in (1.10) gives

@�

@t
C
@.�v/

@x
D 0: (1.13)

3This situation is often described as “The problem is not closed.”
4In order for such an algebraic relation that does not include a time derivative to hold, q must have the ability to instantly

follow � no matter how fast � changes. Strictly speaking, such a relationship holds only in an equilibrium state where � and
q do not change with time, or in a quasi-static process that changes very slowly.

5Here, imagine that you are not looking at a road from a short distance where each car can be identified, but looking at
the road from far above where you can no longer identify each car but can only see the “pattern of crowdedness” along the road
over a much longer range than the length of a car. This point of view is similar to that which we employ in fluid mechanics.
When we deal with air by fluid mechanics, for example, the density and flow velocity of air are treated as if they are continuous
functions of x and t , in spite of the fact that, microscopically, air consists of many nitrogen and oxygen molecules flying around
in vacuum, hence are of quite discrete nature. The concept of “continuum” lies in the background of such treatment of gases
and liquids in fluid mechanics.
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Larger ρ (heavier traffic)

Smaller ρ (lighter traffic)

Figure 1.3: Traffic on a one-lane road.

Equation (1.13) contains two unknowns, � and v, and the problem is not closed. The
simplest model to make the problem closed is to assume that the velocity v is determined by
the density �, and assume some equation of state v D v.�/. It would be reasonable to assume
that the function v.�/ reaches a maximum value v0 as �! 0, becomes 0 at the density �jam
corresponding to a perfect traffic jam where cars cannot move at all, and is a monotonically
decreasing function of � between � D 0 and �jam. Figure 1.4 shows schematically such a relation
between � and v, while Fig. 1.5 shows the corresponding relation between � and q .D �v/.

v

v0

ρjam ρ

Figure 1.4: Typical relationship between � and v.

Figure1.5 shows that q takes the maximum at a certain density �m.
As shown in (1.12), the velocity c with which the density of cars is transmitted is given

by c D dq.�/=d�, and its outline becomes something like that shown in Fig. 1.6.
The figure shows that, for an observer stationary with respect to the road, c < 0 and the

change in � propagates toward the rear of the road when � > �m, while c > 0 and the change
in � conversely propagates toward the front of the road when � < �m.

From the relation

c.�/ D
dq.�/

d�
D
d.�v.�//

d�
D v.�/C �

dv.�/

d�
; (1.14)
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q

qm

ρjamρm ρ

Figure 1.5: Typical relationship between � and q.

c (ρ)

c0

ρjamρm ρ

Figure 1.6: Typical relationship between � and c.

and dv.�/
d�

< 0, c < v always holds. This means that the speed v at which the car runs is always
faster than the speed c at which the change in � propagates, so that the car catches up with
the “wave” of change in � from behind. From the car driver’s point of view, this means that the
information on changes (such as the road is getting more crowded or more vacant) always comes
from ahead of him/her. This seems to be consistent with everyday experience.

1.3 METHOD OF CHARACTERISTICS
If the propagation velocity c is a constant (D c0), the wave equation is given by

@�

@t
C c0

@�

@x
D 0: (1.15)

This equation is linear with respect to the unknown function �.x; t/. Here, as described at the
beginning of this chapter, any initial waveform translates at speed c0. If the initial waveform is
given by � D �0.x/, then the waveform at time t is given by �.x; t/ D �0.x � c0t/. However,
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when derived in the way explained in (1.12), the resultant wave equation becomes

@�

@t
C c.�/

@�

@x
D 0; (1.16)

in which the propagation velocity c is generally a function of the dependent variable �. In this
case, the wave equation is a nonlinear PDE.6 Here, it is not so simple to find �.x; t/ at any time
t . Let us consider the solution of this problem below.

The density �.x; t/ is a function of x and t , and its value is defined at each point of the
upper-half �1 < x <1, t � 0 of the xt-plane. We only have the freedom to give the ini-
tial distribution �.x; 0/ on the x-axis (i.e., t D 0), and �.x; t/ at t > 0 is automatically deter-
mined from the initial condition and the governing equation (1.16). A curve C W x D X.t/ on
the upper-half xt plane such that

dX

dt
D cŒ�.X; t/� (1.17)

holds at each point on it is called the characteristic curve or the characteristics of (1.16). That
is, that C is a characteristic curve means that the reciprocal dX.t/

dt
of the slope at each point

.X.t/; t/ on C is equal to the value of c corresponding to the value of � at that point. Before
solving the problem, such a curve cannot be known in advance because �.x; t/ is not known yet.
But it is certain that such a curve of this nature exists.

From (1.17), along C , a small changes �t and �x of t and x, respectively, are related by
�x D c.�/�t . So the small change �� of �.x; t/ along C that occurs during a small time �t is
given by

�� D �.X C�x; t C�t/ � �.X; t/ D
@�

@t
�t C

@�

@x
�x

D

�
@�

@t
C c.�/

@�

@x

�
�t D 0; (1.18)

where (1.16) was used for the last part. From this, it can be seen that �.x; t/ does not change
along the characteristics C , that is, the characteristics C is a curve carrying a constant value of
�. Since the slope of C is given by 1=c.�/, if � is constant along C , then the slope of C is also
constant, so C becomes a straight line.

Therefore, the initial value problem of the nonlinear wave equation (1.16) can be solved
by the following procedure.

1. From the initial distribution �0.x/ of �, find the initial distribution of c by c0.x/ D

cŒ�0.x/�.

6When we say “linear” and “nonlinear” in the context of differential equations, we do not care if the dependent variable
is differentiated. Also, it does not matter if the independent variable is multiplied. For example, ��x is a quadratic term and
x5�x is a linear term. For nonlinear differential equations, the powerful method of “superposition of solutions” that holds
true for linear differential equations does not hold, which makes solving them much more difficult.
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2. Passing an arbitrary point .x; t/ D .�; 0/ on the x axis, draw a straight line with a slope
1=c0.�/, i.e., x D � C c0.�/t . This is a characteristics on which � takes a constant value
�0.�/.

3. Then, the waveform �.x; t/ at time t is given by a parametric representation using the
starting point � of the characteristics as a parameter as follows:

�.�/ D �0.�/; x.�/ D � C c0.�/t: (1.19)

This solution procedure is called the method of characteristics.

EXAMPLE 1: THE METHOD OF CHARACTERISTICS
By using the method of characteristics, draw the waveform of �.x; t/ at t D 5 of the solution of
the initial value problem of the nonlinear wave equation:

�t C ��x D 0; �.x; 0/ D

(
0 .x 5 0/;

e�1=x .x > 0/:
(1.20)

[Answer]
For example, when using Microsoft Excel, the procedure may be as follows.

1. Name the first column of the spreadsheet �, and enter numerical values at interval of 0.1
from -5 to 10. (Select the range and interval here appropriately.)

2. Name the second column � and if the first column � � 0, put � D 0, and if � > 0, put
� D e�1=� .

3. Name the third column c and enter the speed of the characteristics corresponding to each
�. In the present case, c D �, so put the same value as in the second column.

4. Name the fourth column x. Here, enter the x-coordinate at which the characteristics
starting from each � in the first column reaches at t D 5 at a speed of c.�/, that is, enter
the number with the formula x D � C c.�/ � 5.

If this preparation is made, the initial waveform can be obtained by drawing the graph of the
second column �with the first column � as the horizontal axis, and you get the waveform at t D 5
if you draw the second column � with the fourth column x as the horizontal axis. Figure 1.7
shows a part of the spreadsheet and the waveform obtained by this procedure.

In the linear wave equation (1.15), the waveform only translates and remains the same
forever. It should be noted that the change in waveform as we have seen here arises solely from
the “nonlinearity,” that is, the propagation velocity c depending on the dependent variable �. |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 1.7: The solution of Example 1.

By applying the method of characteristics shown above, let us consider the time change
of the queue of cars that occurs when the signal changes from red to green. Assuming that the
location of the signal is x D 0, the initial distribution of car density � is given by

�0.x/ D

(
0 .x > 0/

�jam .x < 0/:
(1.21)

Note that when x D 0, � is interpreted as taking all values between 0 and �jam.
The pattern of the characteristics becomes as shown in Fig. 1.8. The head of the line of

the cars, that is, the characteristics CC separating the region with � D 0 from that with � ¤ 0
travels at a constant velocity of c for � D 0, i.e., c.0/. On the other hand, the characteristics C�

separating the region in which the cars has already started moving and the part in which the
cars cannot move yet travels at a constant velocity c for �jam, i.e., c.�jam/. Since c.�jam/ < 0,
C� propagates backward. Between CC and C�, there are infinite number of characteristics cor-
responding to 0 < � < �jam which are transmitted at each speed c.�/ from the origin, forming a
fan-shaped area as shown in Fig. 1.8. It can be seen that the corresponding waveform of �.x; t/
changes, as shown in Fig. 1.9.7

A car at x D �D in the waiting queue cannot move until the characteristics C� arrives at
it, even if the signal has changed to green. It can start movingD=jc.�jam/j after the signal turns
green. This is an inevitable consequence derived from a mathematical model of the traffic flow,
and it cannot be helped even if you get irritated and scream “Why can’t I move even though the
signal has changed green?”

7It can be shown that the waveform of �.x; t/ in the fan-shaped area is given by the graph of c.�/ shown in Fig. 1.6
after rotating the figure to make c the horizontal axis and � the vertical axis, and stretch the horizontal axis by t times from
c to ct .

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-005.jpg&w=162&h=113
https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-006.jpg&w=144&h=151
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t1

t2

t

x

C – C+

Figure 1.8: Characteristic curves when the signal turns green.

ρ

x

x

x

t = t2

t = t1

t = t0

ρ

ρ

Figure 1.9: Waveform of � at the initial and later times.

It can also be seen from Fig. 1.8 that the characteristics of propagation velocity c D 0 is
always at the signal position x D 0. Since c D dq.�/=d�, this is the characteristics that corre-
sponds to �m, which maximizes the flux q. This means that if the queue does not end, at the
position of the signal, the state of maximum flux, i.e., the state where the road is used most
effectively, continues to be realized automatically.

EXAMPLE 2: APPLICATION OF METHOD OF CHARACTERISTICS TO
TRAFFIC FLOW
At the Lincoln Tunnel connecting Manhattan, New York, and New Jersey, Greenberg [1] ac-
tually measured in 1959 the density and speed of vehicles, and reported the results as shown in
Table 1.1. In the table, the density and the speed are given in units of (cars/mile) and (mile/h),
respectively, where 1 mile D 1.609 km.

1. Find the relationship v.�/ D a log �C b between � and v that best fits the data given in
the table using the least square method. Also, from the result, find the density �jam when
the cars are completely congested and v D 0.
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Table 1.1: Density and velocity of cars measured at the Lincoln Tunnel

Density ρ Velocity ν Density ρ Velocity ν Density ρ Velocity ν

34 32 88 17 108 11

44 28 94 16 129 10

53 25 94 15 132 9

60 23 96 14 139 8

74 20 102 13 160 7

82 19 112 12 165 6

2. Suppose that the signal is red now and your car is the 10th from the head of the waiting
queue. Estimate how long you have to wait to start moving when the signal turns green,
based on the relationship found above.

[Answer]

1. First, let us review the least-square method briefly. Suppose that there are n pairs of real
numbers .x1; y1/; � � � ; .xn; yn/, and we want to find a function y D ax C b that approxi-
mates these. The error at xi is yi � .axi C b/, so the mean value of the squared errors per
point , i.e., the mean squared error E is given by

E D
1

n

nX
iD1

fyi � .axi C b/g
2 : (1.22)

Here, if the errors at each point were simply summed up, the errors with opposite signs
would cancel each other out and would not be reflected in E, so the errors are squared and
then summed.
E is a function of a and b, and a and b that minimize E must satisfy

@E.a; b/

@a
D 0;

@E.a; b/

@b
D 0: (1.23)

This condition gives a set of simultaneous linear equations for a and b as follows: 
nX

iD1

x2
i

!
aC

 
nX

iD1

x

!
b D

 
nX

iD1

xiyi

!
; (1.24a) 

nX
iD1

xi

!
aC

 
nX

iD1

1

!
b D

 
nX

iD1

yi

!
; (1.24b)
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and by solving these, the coefficients a and b of the function y D ax C b that best ap-
proximates .xi ; yi / .i D 1; � � �n/ in the sense that the mean square error E is minimized
are obtained.
By applying this least-square method with x D log � and y D v, and converting the unit
of length from miles to km, we obtain

v.�/ D a log �C b; a � �27:3 Œkm=h�; b � 135:7 Œkm=h�: (1.25)

Also by setting v D 0 here, �jam D exp .�b=a/ � 143 [car/km].

2. From the result of 1.

c.�/ D
d.�v/

d�
D v C a �! c.�jam/ D a � �27:3 Œkm=h�: (1.26)

Then, the time � that takes to start moving per one vehicle is given by

� D
1=�jam

c.�jam/
D 2:56 � 10�4 Œh=car� � 0:92 Œs=car�: (1.27)

Thus, it is expected that it will take about 9 seconds for the 10th car to start moving.

|

However, it should be noted that there is a serious problem with this estimation. In the
simple model treated here, the traffic flow is formulated based on the viewpoint from far above
where each vehicle cannot be seen. As a result of such a viewpoint, we are allowed to represent
the original discrete system consisting of individual cars as a continuum which can be expressed
by using continuous functions such as �.x; t/ and v.x; t/. If we remember this, discussing the
movement of 10 cars or so, as in this example, seems to somewhat deviate from the range of
validity of the formulation. In any case, you can check on your own how the above result is
reasonable when waiting for a signal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 INTERSECTION OF CHARACTERISTICS AND
OCCURRENCE OF MULTIVALUEDNESS

As we saw above, in the nonlinear wave equation (1.16), a point with a value of � travels along
the characteristics at a speed of c.�/. If, in the initial waveform, � corresponding to fast c is
behind � corresponding to slow c, then with the passage of time, the fast characteristics starting
from behind catches up with the slow characteristics starting from the front, and at some point
in time an intersection of characteristics occurs. In the case of traffic flow, c is a monotonically
decreasing function of �, so this happens when there is a part with larger � (more crowded) in
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Figure 1.10: Intersection of characteristics.
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Figure 1.11: Steepening of waveform.

front of a part with smaller � (less crowded), i.e., a part with @�=@x > 0 in the initial waveform.
(See Fig. 1.10).

Figure 1.11 shows the time change of the corresponding waveform of �. It can be seen that
the waveform becomes steeper as the characteristics carrying different � approach with time, and
the slope diverges at a certain time, and the waveform finally becomes a multivalued function
after that time. In the context of traffic flow, � represents the density of cars (number of cars
per km), and it is not physically permitted to have multiple values at one point in space-time.
In other words, we cannot but say that the theory has broken when the multivaluedness occurs.

As shown in Fig. 1.11, in the waveform of car density, the part with @�
@x
> 0 tends to

steepen automatically with time. As shown by (1.14), the speed v the car actually runs is al-
ways faster than c.�/, so the person driving the car enters the waveform of �.x; t/ as shown in
Fig. 1.11 from the left, passes through it and leaves to the right. Then, the fact that the part of
the waveform of � where @�=@x > 0 has a tendency to steepen implies that, when a car encoun-
ters a crowded state it happens suddenly, on the other hand, when it leaves the crowded area the
change occurs only slowly. This seems to be consistent with everyday experience again.
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In the nonlinear wave equation (1.16), when the initial waveform �0.x/ D �.x; 0/ is speci-

fied, the time when the characteristics intersect for the first time and the multivaluedness occurs
can be predicted as follows. Since the propagation velocity c of the characteristics carrying a
certain value of � is determined by the value of �, given the initial distribution �0.x/ of �, the
initial distribution c0.x/ D cŒ�0.x/� is determined. Let us imagine how the characteristics of
propagation velocity c0.x/ leaving x initially catches up with the characteristics of propagation
velocity c0.x C�x/ starting from x C�x. Since c0.x C�x/ � c0.x/C .dc0=dx/�x when
�x � 1, the speed difference �c between them is given by .dc0=dx/�x. (dc0=dx < 0 for an
intersection of characteristics to occur.) Then the time required for the velocity difference �c to
cancel the initial spatial gap of �x is j�x=�cj D 1=jdc0=dxj. Therefore, the time tb at which
the intersection occurs for the first time at somewhere of waveform is given by

tb D min
�

1

jdc0=dxj

�
D

1

max fjdc0=dxjg
; (1.28)

where min{ }, max{ } mean the maximum and the minimum values over the whole initial wave-
form, respectively.

EXAMPLE 3: STEEPENING AND OCCURRENCE OF MULTIVALUEDNESS
For the initial value problem of nonlinear wave equation

@�

@t
C �

@�

@x
D 0; �0.x/ D e�x2

; (1.29)

predict the time tb at which the solution becomes multivalued for the first time.

[Answer]
In this problem, c.�/ D �, so c0.x/ D �0.x/ D e�x2 . Then, �dc0=dx D 2x e�x2 , which

takes the maximum value
p
2=e at x D 1=

p
2. Therefore, tb is given by

p
e=2, and at this time

those characteristics that start from the vicinity of x D 1=
p
2 at t D 0 are expected to intersect.

Figure 1.12 shows the time evolution of the solution of the problem obtained by the method
of characteristics described in Section 1.3. It can be confirmed that the waveform steepens in
time, and a point at which the slope diverges to infinity appears at the predicted time, and the
solution becomes multivalued thereafter.

1.5 SHOCK FITTING
The following are two possible ways to avoid the multivaluedness which is physically unaccept-
able.

(i) The occurrence of unacceptable multivaluedness means that there is some defect in the
wave equation (1.16). Therefore, we return to the original physical system again and review
the derivation process of (1.16), and make the necessary improvements.
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Figure 1.12: Example 3: Occurrence of multivaluedness.

For example, in the case of the traffic flow treated above, it has been assumed that the
speed v of a car depends only on the density � at the point of space-time where the car is.
However, when actually driving a car, if you know that the road ahead is congested, you
may run slower than the speed corresponding to the value of � around you. This suggests
that the velocity v can be affected not only by the density � there but also by its derivative
�x , but this point is not taken into account in the current model. (Modification of the
model along this direction will be discussed in the next chapter.)

(ii) The wave equation (1.16) is derived from the conservation law and derived through a
procedure that seems reasonable, so at least the part where the solution is not multivalued
should have its justification. It is wasteful to abandon the whole solution just because it is
multivalued in part. Then we adopt the part of the solution where it is not multivalued as
it is and replace the multivalued part with an appropriate “discontinuity.” Thus, we modify
the original “continuous but multivalued solution” to a “single-valued but non-continuous
solution.”8

The method (i) is a serious and honest method, but the equation itself and the analysis
method must become more complicated. On the other hand, although the method (ii) is rather
symptomatic, it is likely to be much easier than (i). We will introduce here a method called
shock fitting of method (ii).

When a multi-valued part as shown in Fig. 1.13 occurs in the waveform at a certain time,
we would like to introduce an appropriate discontinuity andmodify it to a single-valued solution.
In this case, what matters is where to put the discontinuity. This problem is solved as follows.

8We have started from a differential equation (1.16). Therefore, introducing such a function with non-differentiable point
will extend the class of solutions. As we shall see below, this extension is carried out based on the “conservation law in integral
form,” and a new solution that has a non-differentiable point introduced is called a “weak solution.”
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ρ

X(t) x

Figure 1.13: Shock fitting. Dotted line: original continuous but multi-valued solution; solid line:
modified single-valued but discontinuous solution.

Although the wave equation (1.16) is defective in the sense that it gives a multi-valued
solution, the conservation law of integral form

d

dt

Z b

a

�.x; t/ dx D q.a; t/ � q.b; t/; (1.30)

which is the starting point of derivation of (1.16) is a law that must hold, and it cannot be
discarded. However, since we are trying to introduce discontinuities to the solution, we cannot
transform (1.30) to the conservation law of differential form (1.10) by assuming differentiability
of � and q as before.

Let x D X.t/ be the location where discontinuity should be inserted at time t , �.x; t/
and q.x; t/ be piecewise smooth functions9 including the discontinuity at x D X.t/. For an
intervalŒa; b� that contains discontinuity,Z b

a

�.x; t/ dx D

Z X.t/

a

�.x; t/ dx C

Z b

X.t/

�.x; t/ dx: (1.31)

Here, in the integration on the right side, not only the integrand but also the integration interval
depend on time, and the Leibniz rule is required to evaluate its time derivative. The Leibniz
rule says that for a function F.t/ of t defined as an integral whose upper and lower limits also

depend on t like F.t/ D
Z b.t/

a.t/

f .x; t/ dx, the time derivative of F.t/ is given by

dF.t/

dt
D

Z b.t/

a.t/

@f .x; t/

@t
dx C Pb.t/f Œb.t/; t � � Pa.t/f Œa.t/; t �: (1.32)

Evaluating the conservation law of integral form (1.30) using this,Z X.t/

a

@�

@t
dx C PX.t/�.X�; t /C

Z b

X.t/

@�

@t
dx � PX.t/�.XC; t / D q.a; t/ � q.b; t/; (1.33)

9f .x/ is called “piecewise smooth” when f .x/ and f 0.x/ are both piecewise continuous.
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whereXC D X C 0 andX� D X � 0.This equation holds for any a and b. Considering the limit
a! X� and b ! XC, the two integrals become 0, and we obtain an equation for the moving
speed PX.t/ of the discontinuity,

PX.t/ D
q.XC; t / � q.X�; t /

�.XC; t / � �.X�; t /
D

jump of flux q at discontinuity
jump of density � at discontinuity : (1.34)

In order to be consistent with the conservation law (1.30), the discontinuity must always move
at a speed that satisfies this relationship. This is called the Rankine–Hugoniot condition.

In the above the condition for the speed of the discontinuity has been derived from the
viewpoint of a stationary observer. The same result can also be derived more easily by introducing
the viewpoint of an observer moving with the discontinuity. From the viewpoint of an observer
moving at speed PX.t/ with the discontinuity, the discontinuity is at rest as shown in Fig. 1.14,
and the densities at its front and back are �.XC; t / and �.X�; t /, respectively. Since there is a loss
of flux due to the discontinuity itself moving at the velocity PX.t/, the flux on the front side and
the back side are given by q.XC; t / � �.XC; t / PX.t/ and q.X�; t / � �.X�; t / PX.t/, respectively.
The discontinuity is a mere surface of thickness 0 and cannot store a finite amount of physical
quantities, so at each time, the flux flowing in from the rear side must flows out from the front.
Therefore, the flux on the front side and that on the back side should always be equal, that is:

q.XC; t / � �.XC; t / PX.t/ D q.X�; t / � �.X�; t / PX.t/: (1.35)

This is nothing but the Rankine–Hugoniot condition (1.34).

Density ρ(X_, t) Density ρ(X+, t)

Flux

 q(X_, t) – ρ(X_, t)Ẋ(t)

Flux

 q(X+, t) – ρ(X+, t)Ẋ(t)

Discontinuity

Figure 1.14: Density and flux for an observer moving with the discontinuity.

EXAMPLE 4: SPEED OF ELONGATION OF TRAFFIC JAM
On the basis of the result of the analysis performed in Example 2, find the speed of elongation
of the queue of cars completely stopped in the congestion when the flow of cars of speed v D
30 km/h catches up with the traffic jam from behind.
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[Answer]

Suppose that the tail end of the current traffic jam is x D 0, and there is a complete traffic
jam with � D �jam in x > 0, and there is a car flow of speed v in x < 0. From the relation
between v and � obtained in Example 2, if � and q are expressed as functions of v,

� D exp
�
v � b

a

�
; q D �v D v exp

�
v � b

a

�
; a � �27:3 Œkm=h�; b � 135:7 Œkm=h�;

(1.36)
and

�jam D exp
�
�
b

a

�
; q.�jam/ D 0: (1.37)

Substituting these into Rankine–Hugoniot condition (1.34) and manipulating them, the speed
PX of the tail of the traffic jam, which is a discontinuity point of density and flux, is given by

PX.t/ D
q.�jam/ � q.v/

�jam � �.v/
D

�v exp
�

v�b
a

�
exp

�
�

b
a

�
� exp

�
v�b

a

� : (1.38)

From this, it is estimated that when v D 30 km/h, the traffic jam elongates at a rate of about
15 km per hour. |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

So far, we have considered the situation in which the equation governing the wave is
given by a single partial differential equation like (1.16). However, there are many types of wave
phenomena that simultaneously transmit changes in multiple physical quantities, and in such a
case, the governing equation is given in the form of a system of equations describing the rate of
change in time of each physical quantity.

For example, when a water wave having a much longer wavelength than the water depth
h, such as tsunami, propagates, the surface displacement �.x; t/ and the flow velocity u.x; t/
occur simultaneously. It is known that the governing equations for such a long water wave are
given by10

@�

@t
C
@Œ.hC �/u�

@x
D 0;

@u

@t
C u

@u

@x
C g

@�

@x
D 0: (1.39)

The method of analysis for such types of waves that simultaneously convey changes in multiple
physical quantities is summarized in the Appendix B. There, it is also shown that even for this
type of wave, it can be reduced to a single wave equation such as (1.16) under the condition
called the simple wave.

For more detailed information on the overall contents of this chapter, refer to [2, 3], for
example.

10For the derivation of this equation, see Appendix E.
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C H A P T E R 2

Burgers Equation: Effect of
Diffusion

If there is a temperature difference between places in an object, heat flows from
high temperature to low temperature to reduce the temperature difference. When a
drop of cream is dropped in a cup of coffee, the cream naturally spreads to reduce
the difference in the concentration of the cream. There is an action called “diffusion”
everywhere around us. In this chapter, we will consider the effect of this diffusion on
wave propagation.

2.1 BURGERS EQUATION
Recall the traffic flow that was taken as an example in Chapter 1. The starting point of the story
was the conservation law of cars

�t C qx D 0; q.�/ D �v.�/; (2.1)

where subscripts t and x denote partial derivatives with respect to them. The car speed v is a
monotonically decreasing function of the car density �, and the simplest approximation to v.�/
would be to assume a linear function of �. Then,

v D v0.1 � �=�jam/ �! q D v0.� � �
2=�jam/; (2.2)

and (2.1) reduces to a nonlinear wave equation like

�t C v0�x C ˛��x D 0; ˛ D �2v0=�jam: (2.3)

As we studied inChapter 1, the solution of (2.3) becomesmultivalued because of the intersection
of characteristics, and if we do not introduce an artificial “discontinuity,” the solution breaks
down at some finite time.

The traffic model assumes that the speed v of the car is determined by the local density �
at that time. However, when actually driving a car, the driver always pays attention to the road
conditions ahead as well as around him. For example, if you think that the road ahead is crowded
and you will not be able to run smoothly there, you may run at a somewhat modest speed even if
your surroundings allow you to run faster, and conversely if you know that the road ahead is free
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and the flow is faster, you may run faster than the speed determined from your surroundings,
expecting the next acceleration.

One way to introduce such a “look ahead” effect in the traffic flow model is to add a term
proportional to the spatial derivative �x of � to the equations of v and q, such as,

v D v0.1 � �=�jam/ �
�

�
�x �! q D v0.� � �

2=�jam/ � ��x : (2.4)

Here the coefficient � of the additional term must be positive in order to reduce the speed when
the road ahead is more crowded (�x > 0). Then the conservation law of the car (2.1) becomes

�t C v0�x C ˛��x D ��xx; ˛ D �2v0=�jam; (2.5)

and a second derivative term �xx is newly added.
In the context of fluid mechanics, Lighthill [4] showed, by a systematic analysis using a

perturbation method starting from a system of basic equations for gases, and by taking into con-
sideration of the dissipative effects such as viscosity and heat conduction, that the propagation
of weakly nonlinear sound waves is governed by

vt C c0vx C vvx D ıvxx; (2.6)

which is an equation with exactly the same form as (2.5).1
In fluid mechanics, the nonlinear PDE

ut C uux D �uxx (2.7)

is well known as the Burgers equation. This equation was proposed in 1939 by Burgers as a
simple 1D model of the Navier–Stokes equation

ut C .u � r/u D �
1

�
rp C �r2u; (2.8)

which is the most basic equation of motion of fluid mechanics, in order to study turbulence
phenomena [1].Here, u.x; t / is the flow velocity vector,p.x; t / is the pressure, and � is a physical
constant called the “kinematic viscosity” of the fluid. In this book, not only (2.7) but also all
nonlinear PDF of the form

vt C c0vx C ˛vvx D �vxx; (2.9)
like (2.5) and (2.6), are called the “Burgers equation.” The term c0vx in (2.9) can always be
eliminated by looking at the system from a framework translating at speed c0. That is, if new
space variable � and time variable � are introduced by

� D x � c0t; � D t; (2.10)
1Here, c0 represents the sound velocity in the stationary gas, and v.x; t/ represents v D u C c � c0, that is, the de-

viation of the propagation velocity u C c of the CC characteristics from the static sound velocity c0. (For more detail, see
Appendix B.) ı is a physical constant called “acoustic diffusivity” which is determined from the viscosity coefficient and the
thermal diffusivity of the gas, and in the case of air at normal temperature, it takes a very small value of about 2 � 10�5 m2=s.
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and v.x; t/ is treated as a function of � and � , according to the chain rule of partial differentiation

@

@t
D

@

@�

@�

@t
C

@

@�

@�

@t
D

@

@�
� c0

@

@�
; (2.11a)

@

@x
D

@

@�

@�

@x
C

@

@�

@�

@x
D

@

@�
; (2.11b)

(2.9) can be rewritten as
v� C ˛vv� D �v�� : (2.12)

At the same time, if we introduce a new dependent variable u D ˛v, (2.9) gives

u� C uu� D �u�� ; (2.13)

i.e., the original form of the Burgers equation (2.7). From this, all PDE of the form (2.9) is
equivalent to the Burgers equation (2.7). From now on, we will consider only the Burgers equa-
tion of the form2

ut C uux D �uxx : (2.14)

2.2 DIFFUSION EFFECT
The second derivative term �uxx of the Burgers equation is called the diffusion term. In nature,
when there is a spatial non-uniformity in the density of a physical quantity, it is often observed
that the flux of the quantity is automatically generated so as to eliminate the non-uniformity, and
is generally called the diffusion phenomenon. For example, heat flows from a high temperature
part to a low temperature part, and a drop of a cream dropped in a cup of coffee spreads around.
These are all diffusion phenomena.

Taking the temperature distribution of a straight wire as an example, let us consider the
equation governing the diffusion phenomenon more specifically.3 Take the x axis along the wire,
and let u.x; t/ [K] be the temperature at point x and time t . Assuming that the heat capacity
per 1 m of the wire is ˛ [ J/m K], the density of thermal energy �.x; t/ [ J/m] can be written as
� D ˛u. If the flux of thermal energy is denoted by q.x; t/ [ J/s], the conservation law of thermal
energy requires the equation

�t C qx D 0 (2.15)
to hold. The heat flux q.x; t/ flows from the high temperature to the low temperature, and its
magnitude is larger as the temperature changes more rapidly. The simplest mathematical model
to express this property is to assume

q D �ˇ ux; (2.16)
2If we change the space and time scale by Qt D t=�, Qx D x=�, we can transform (2.14) to uQt C uu Qx D u Qx Qx and can

treat the diffusion coefficient � as 1, but we will not do it here.
3In Fig. 1.2 of Chapter 1, it is sufficient to replace the electric charge with the unit of coulomb with the thermal energy

with the unit of Joule.
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which is called “Fourier’s law” of heat conduction. Here, ˇ is a positive material constant called
the “heat conduction coefficient.” Substituting � D ˛u and (2.16) into (2.15) immediately gives
the heat equation

ut D � uxx; .� D ˇ=˛/; (2.17)

which governs the evolution of the temperature distribution u.x; t/.
In the above, (2.17) was derived in the context of temperature change due to heat con-

duction. But for its derivation, we have used only very natural laws such as conservation law
(2.15) and Fourier’s law (2.16). Reflecting this fact, (2.17) holds true as it is if u.x; t/ is not the
temperature but some other quantity such as the concentration of solute in a certain solution.
Thus, (2.17) is one of the most important PDEs that appear in various fields of natural science,
and in more general context, it is called the diffusion equation.

Figure 2.1 shows an example of the behavior of the solution of (2.17), in which we can
see how u.x; t/, which was initially concentrated as a sharp pulse, becomes more and more flat
with time.
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Figure 2.1: Behavior of a solution of the diffusion equation (� D 1, u.x; 0/ D e�x2).

As we studied in Chapter 1, the term uux on the left side of the Burgers equation (2.14)
represents the nonlinear effect that the part of the waveform with larger u propagates faster, so
that the waveform will lean forward and steepens. On the other hand, the diffusion term �uxx

on the right side tends to eliminate the spatial difference in u as discussed above. Thus, the
Burgers equation is a concise and interesting wave equation that has two competing effects, the
nonlinear effect that makes the waveform steeper and the diffusion effect that makes it flatter.
In the Burgers equation, since the diffusion term always stops the steepening by the nonlinear
term, multivalued solutions will not appear for any initial waveform.

The last term �r2u of the Navier–Stokes equation (2.8) is usually called the “viscosity
term,” but it physically corresponds to the 3D version of the diffusion term � uxx discussed
above. If there is non-uniformity in momentum (i.e., spatial difference in flow velocity v), mo-
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mentum flux is automatically generated from the faster part to the slower part to eliminate the
velocity difference, and as a result of this the slower part is accelerated and the faster part is
decelerated. We usually call this diffusion of momentum “viscosity.”

It is known that the water surface displacement �.x; t/ is governed by the equation

�t C

�
3
p
g.hC �/ � 2

p
gh
�
�x D 0; (2.18)

when the wavelength of the water wave is much longer than the water depth h. (For more detail,
see Appendices B and F.) As the waves rush to the coast, they gradually steepen and start to break
up. This is called wave breaking. Wave breaking causes energy dissipation, but this effect is not
taken into consideration in (2.18). In (2.18), if

p
g.hC �/ is approximated by

p
gh.1C �=2h/

by assuming that � is small compared to the water depth h, and if the dissipation of wave energy
by wave breaking is modeled by the diffusion term �xx by analogy from the viscosity term of the
Navier–Stokes equation, (2.18) becomes

�t C c0�x C ˛��x D ��xx; c0 D
p
gh; ˛ D

3

2h

p
gh; (2.19)

and the Burgers equation appears again. In the field of coastal engineering, this equation is
sometimes used as a simple model equation for waves in the wave breaking zone near the coast.

2.3 HOPF–COLE TRANSFORMATION: CLOSE
RELATION TO DIFFUSION EQUATION

The Burgers equation (2.14) is an unusual nonlinear PDE in the sense that its initial value
problem can be solved analytically. Equation (2.14) can be transformed into

.�u/t D

�
1

2
u2
� �ux

�
x

: (2.20)

This means that there exists a scalar function �.x; t/ such that

�x D �u; �t D
1

2
u2
� �ux : (2.21)

Then, deleting u from (2.21) gives

�t D
1

2
.�x/

2
C ��xx : (2.22)

If we introduce  such that � D 2� ln (ln is a natural logarithm), the above equation is trans-
formed into

2�
 t

 
D
1

2

�
2�
 x

 

�2

C �

�
2�
 xx �  

2
x

 2

�
�!  t D � xx : (2.23)
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That is, the Burgers equation (2.14) for u can be converted into a more manageable linear PDE,
the diffusion equation, for  , by using the variable transformation

u D �2�
 x

 
: (2.24)

The transformation used here is called Hopf–Cole transformation from the name of the re-
searchers who first found it [2, 3].

It is known that the analytical solution of the initial value problem of the diffusion equa-
tion (2.23) in the infinite domain is given by

 .x; t/ D
1

p
4��t

Z 1

�1

 0.x
0/ exp

�
�
.x � x0/2

4�t

�
dx0; (2.25)

where  0.x/ represents the distribution of  .x; t/ at t D 0.4 Therefore, the initial value problem
of the Burgers equation can be solved by the following procedure.

1. Find  0.x/ corresponding to the given initial condition u.x; 0/ from (2.24).

2. Find  .x; t/ at an arbitrary time t from (2.25).

3. Find u.x; t/ corresponding to this  .x; t/ from (2.24).

2.4 TYPICAL SOLUTIONS OF THE BURGERS EQUATION
The Burgers equation (2.14) is a nonlinear equation, and even if u1.x; t/ and u2.x; t/ are both
functions satisfying (2.14), their linear combination does not satisfy (2.14). On the other hand,
the diffusion equation (2.23) is a homogeneous linear differential equation, and if  1.x; t/ and
 2.x; t/ satisfy (2.23), then any linear combination c1 1.x; t/C c2 2.x; t/ also satisfies (2.23).
Using this linearity and the correspondence between the diffusion equation and the Burgers
equations shown above, we can easily find some basic solutions of the Burgers equation as fol-
lows:

2.4.1 UNIFORM SOLUTION
For any constant u1, c1,

 .x; t/ D exp
�
�
u1

2�
x C

u2
1

4�
t � c1

�
(2.26)

is obviously a solution of the diffusion equation (2.23). Therefore, u.x; t/ connected with this
by Hopf–Cole transformation (2.24), i.e.,

u D �2�
 x

 
D �2�

�
u1

2�
 

 
D u1 .D constant/ (2.27)

4For the derivation of this solution, see Appendix C.
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is a solution of the Burgers equation. The fact that a constant is a solution of the Burgers equa-
tion can be understood from a look at the equation itself, and this is a trivial and boring solution.
However, this trivial solution turns out to be surprisingly useful in finding more complex solu-
tions as shown below.

2.4.2 SHOCK WAVE SOLUTION
Because the diffusion equation (2.23) is homogeneous and linear, the principle of superposition
of solutions holds. That is, the sum  D  1 C  2 of two solutions

 1 D exp
�
�
u1

2�
x C

u2
1

4�
t � c1

�
;  2 D exp

�
�
u2

2�
x C

u2
2

4�
t � c2

�
; (2.28)

also a solution of (2.23). The solution u.x; t/ of the Burgers equation connected to this  by the
Hopf–Cole transformation is given by

u D �2�
 x

 
D �2�

�
u1

2�
 1 �

u2

2�
 2

 1 C  2

D
u1 1 C u2 2

 1 C  2

: (2.29)

If we introduce � and x0 so that

 1

 2

D exp
�
�
1

2�
.u1 � u2/x C

1

4�
.u2

1 � u
2
2/t � .c1 � c2/

�
D exp

�
1

2�
.u2 � u1/

�
x �

u1 C u2

2
t � x0

��
D exp �; (2.30)

then u.x; t/ can be rewritten as

u D
u1e�=2 C u2e��=2

e�=2 C e��=2
D
1

2
.u1 C u2/ �

1

2
.u2 � u1/

e�=2 � e��=2

e�=2 C e��=2

D
1

2
.u1 C u2/ �

1

2
.u2 � u1/ tanh �

2

D
1

2
.u1 C u2/ �

1

2
.u2 � u1/ tanh

�
u2 � u1

4�

�
x �

u1 C u2

2
t � x0

��
; (2.31)

where tanh x is a hyperbolic function defined by tanh x D .ex � e�x/ = .ex C e�x/, which is a
monotonically increasing odd function connecting the value �1 at x ! �1 and the value +1 at
x !1. If u1 < u2, (2.31) has a waveform that smoothly connects the constant state u D u2 at
x ! �1 and the constant state u1 at x !1 as shown in Fig. 2.2, and translates at a constant
speed c D .u1 C u2/=2without changing the waveform.5 This is called the shockwave solution
of the Burgers equation.

5Regardless of the magnitude relationship between u1 and u2, (2.31) asymptotes to u D max.u1; u2/ as x ! �1

and to u D min.u1; u2/.
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Figure 2.2: Shock wave solution of the Burgers equation.

The representative value d of the width of the shock wave, that is, the distance of transition
from u2 to u1 is given by

d D
4�

ju2 � u1j
: (2.32)

Therefore, the stronger the shock wave (that is, the greater the jump ju2 � u1j) and the smaller
the diffusion coefficient �, the thinner the shock wave, and in the limit � ! 0 the shock wave
becomes a discontinuity of thickness zero.

The fact that the thickness of the shock wave solution is determined as (2.32) indicates
that this shock wave solution is realized on the balance between the nonlinear effect and the
diffusion effect. If there is only a nonlinear effect, the waveform will lean forward and steepens,
and the solution will break down. Also, if there is only a diffusion effect, any waveform will
become flatter with time, and steady state will not be realized. In order for the nonlinear effect
that steepens the waveform to be balanced with the diffusion effect that flattens the waveform,
the magnitudes of both must be comparable. If the thickness of the shock wave is d and the
jump of u between front and rear of the shock wave is U , the magnitudes of the nonlinear term
uux and the diffusion term �uxx are estimated as O.U 2=d/ and O.�U=d2/, respectively. It can
be seen that the d determined by (2.32) is exactly the thickness to make the magnitudes of these
two competing terms comparable.

In the limit � ! 0, the Burgers equation becomes a single hyperbolic equation

ut C uux D 0; that isut C qx D 0; q WD
1

2
u2: (2.33)

In this hyperbolic equation, the characteristics catches up when there is a portion of ux < 0 in
the initial condition, and the solution becomes multivalued. In the method of “shock fitting”
discussed in Chapter 1, we introduced an artificial discontinuity to the solution to eliminate this
multivaluedness. In the case of (2.33), according to the Rankine–Hugoniot condition (1.34),
the discontinuity between the states with u D u1 and u D u2 should propagate at the speed PX
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given by

PX D

1
2
u2

2 �
1
2
u2

1

u2 � u1

D
u1 C u2

2
; (2.34)

which matches the propagation velocity of the shock wave solution of the Burgers equation
found above. From this, it can be said that the shock wave solution of the Burgers equation
asymptotes to the discontinuity which is artificially introduced to the hyperbolic equation in the
� ! 0 limit, and when � ¤ 0, it expresses the internal structure (i.e., the state of transition) of
the shock wave with finite thickness.

EXAMPLE 1: STEADILY TRAVELING SOLUTION OF THE BURGERS
EQUATION
Find the shock wave solution (2.31) as the steady traveling wave solution of the Burgers equation
(2.14).

[Answer]
A steady traveling wave solution is a solution that travels at a constant speed without

changing the waveform. For the linear wave equation ut C c0ux D 0 (c0 Dconstant), whatever
waveform F.x/ is given initially, it only translates at velocity c0, so for an arbitrary function
F.x/, u.x; t/ D F.x � c0t/ is a steady traveling solution. However, in the case of the Burgers
equation, which is nonlinear, the waveform given initially hardly translates as it is except for a
special waveform.

In general, when a PDE for u.x; t/ is given, its steady traveling solution can be obtained
by the following procedure.

1. Assuming that the initial waveform of the steady traveling wave solution is U.x/ and the
propagation velocity is c, we can write u.x; t/ D U.x � ct/. Of course neither U.x/ nor c
are known yet.

2. Introduce � by � D x � ct . When u.x; t/ can be written as U.x � ct/, u depends on x and
t only through �. Therefore,

@u

@t
D
dU

d�

@�

@t
D �c

dU

d�
;

@u

@x
D
dU

d�

@�

@x
D
dU

d�
: (2.35)

Substituting these into the original PDE for u.x; t/ gives an ordinary differential equation
for U.�/.

3. Find U.�/ by solving this ordinary differential equation with appropriate boundary con-
ditions.

Let us apply this procedure to the Burgers equation to find the shock wave solution (2.31).
Assuming u.x; t/ D U.x � ct/ and substituting into the Burgers equation (2.14), we obtain an
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ordinary differential equation for U.�/ as follows:

� cU 0
C UU 0

D �U 00; (2.36)

where U 0 stands for dU=d�. Integrating both sides once with respect to �,

1

2
U 2
� cU D �U 0

C c1; (2.37)

where c1 is the integration constant. Assuming a shock wave solution, we employ the boundary
conditions U ! u2 .� ! �1/, U ! u1 .� !C1/. Since U approaches a constant value at
� !˙1, U 0 ! 0 .� !˙1/. Evaluating (2.37) at � !˙1,

1

2
u2

2 � cu2 D c1;
1

2
u2

1 � cu1 D c1; (2.38)

which immediately gives
c D

1

2
.u1 C u2/; c1 D �

1

2
u1u2: (2.39)

The property of the shock wave solution (2.31) that the propagation velocity c is the average of
u1 and u2 is thus obtained. Substituting these c and c1 into (2.37) yields,

dU

d�
D

1

2�
.U � u1/.U � u2/: (2.40)

This is a separable first order differential equation and can be solved as follows:

dU

.U � u1/.U � u2/
D
d�

2�
�!

�
1

U � u2

�
1

U � u1

�
dU D

u2 � u1

2�
d�

�! ln
ˇ̌̌̌
U � u2

U � u1

ˇ̌̌̌
D
u2 � u1

2�
.� � x0/; (2.41)

where x0 is the integration constant. If we denote the right side of (2.41) as � , and remove the
absolute value by taking care that u1 < U < u2, we obtain

u2 � U

U � u1

D e�
�! U D

u1e�=2 C u2e��=2

e�=2 C e��=2
; (2.42)

and the rest will be the same as (2.31). |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4.3 COALESCENCE OF SHOCK WAVES
The sum of the three basic solutions of the diffusion equation  D  1 C  2 C  3 with

 i D exp
�
�
ui

2�
x C

u2
i

4�
t � ci

�
; .i D 1; 2; 3/ (2.43)
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is also a solution of the diffusion equation (2.23), and the solution of the Burgers equation
connected to this by the Hop–Cole transformation is given by

u D �2�
 x

 
D
u1 1 C u2 2 C u3 3

 1 C  2 C  3

: (2.44)

The concrete expression of this solution u.x; t/ becomes somewhat complicated, so it is not
described here. But, assuming u1 < u2 < u3, and if the relationship of the initial positions are
appropriate, this solution describes the process of shock wave coalescence in which the faster
shock wave (velocityD u2Cu3

2
) connecting u3 and u2 in the rear catches up the slower shock wave

(velocityD u1Cu2

2
) connecting u2 and u1 in front, and finally turns into one stronger shock wave

directly connecting u3 and u1 (see Fig. 2.3). As Lighthill [4] showed, the Burgers equation is
an equation that describes the propagation of (weak) shock waves in the real air, so this solution
tells us that the shock waves that travel through the air actually have the property that they
coalesce when they catch up and form a stronger shock wave.

u3 (u2 + u3)

u2

u1

x

1
2

(u1 + u2)1
2

(u1 + u3)1
2

Figure 2.3: Coalescence of two shocks.

EXAMPLE 2: NUMERICAL SIMULATION OF THE BURGERS EQUATION
Create a program that numerically traces the evolution of the Burgers equation. Also, using
it, reproduce by numerical simulation the process of coalescence in which the shock wave S1

connecting u D 3 and u D 2 catches up with the shock wave S2 connecting u D 2 and u D 0
to form one large shock wave S3 connecting u D 3 and u D 0. Let the value of the diffusion
coefficient � be 0.1.

[Answer]
The Burgers equation (2.14) can be written as

@u

@t
C
@F

@x
D �

@2u

@x2
; F WD

1

2
u2: (2.45)

As an example of the simplest finite difference approximations of (2.45), there is the following
numerical scheme that approximates the time derivative with forward difference and the space
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derivative with central difference:

unC1
j � un

j

�t
C
F n

j C1 � F
n

j �1

2�x
D �

un
j �1 � 2u

n
j C u

n
j C1

.�x/2
: (2.46)

Here, �t and �x are the intervals for discretization of time and space, respectively, and un
j

denotes the value of u at nth time step and j th space mesh point. The unknown in (2.46) is only
unC1

j , and the following can be obtained:

unC1
j D un

j �
�t

4�x

h�
un

j C1

�2
�
�
un

j �1

�2i
C
��t

�x2

�
un

j �1 � 2u
n
j C u

n
j C1

�
: (2.47)

By using (2.47), if the value of u at all space mesh points are known at the nth time step, then
the approximate value of u at each space mesh point in the .nC 1/th time step can be obtained,
and by repeating this process, the evolution of the waveform can be traced once it is given at
t D 0.

Care must be taken here in selecting�t and�x. In the case of this example, the thickness
of d of the coalesced shock wave S3 can be used as a representative length scale of the wave-
form change. Considering the thickness (2.32) of the shock wave solution, d D 0:4=3. Since
the waveform changes significantly at a distance of about d , �x needs to be sufficiently short
compared to d in order to express the waveform using only the values at discrete points with a
reasonable accuracy. For example, this requirement will be fairly satisfied if �x D d=10, say.

A scheme in which the value at one space mesh point in the next time step, which is an
unknown quantity, can be expressed in a clearly solved form by known quantities, as in (2.47),
is called an explicit scheme. In an explicit scheme, numerical calculations may “explode” and
do not work unless the time step �t is chosen small enough in conjunction with the space step
�x. In the case of this example, when �x is determined to a certain value as described above,
the numerical calculation will not work unless we specify �t so that both the coefficients of the
second term �t

4�x
and the third term ��t

�x2
are sufficiently small like 0.1, say.6

Figure 2.4 is an example of the numerical result obtained by the scheme (2.47). At t D 0,
the centers of S1 and S2 are located at x D 5 and x D 15, respectively. Since the distance between
the two is far enough initially to ignore each other’s interference, they initially travel as single
shock waves. According to the shock wave solution (2.31), the speeds of S1 and S2 are 2.5 and 1,
respectively, so the two are expected to coalesce around x � 21:7 at t � 6:7 and become a single
large shock wave S3 that directly connects 3 and 0 and propagates at a speed of 1.5. It can be
seen that the results of the numerical calculation shown in Fig. 2.4 correctly reproduces all such
theoretical predictions.

|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6This is a requirement from the “stability” of the numerical scheme. For more details of this topic, refer to textbooks on

numerical analysis.
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Figure 2.4: Numerical results of shock wave coalescence.

2.4.4 BORE
Similar to the shock waves in gases, there is a water wave phenomenon in which a waveform
accompanied by a sudden change in water surface height travels for a long distance, and is called
a bore. Bores can be seen worldwide in rivers with large difference in tides at the estuary. The
Pororoca of the Amazon, the bore of the River Severn in England, and that of Fundy Bay of
Canada are among the most famous ones.

Figure 2.5: Bore in the River Severn (photographed by the author).

When energy dissipation is not taken into consideration, the long wave propagation to
the still water is governed by the nonlinear wave equation such as (2.18), and the nonlinear
term brings about the steepening of the waveform. The steepening is balanced with the energy
dissipation due to wave breaking, and a bore that propagates over long distance is realized. The
Burgers equation (2.19) may be used as a simplest model for this phenomenon of water waves,
too.

However, there is one big difference between bores in water waves and shock waves in
gases. In the shock waves in gases, it is energy dissipation due to diffusion effects such as vis-
cosity and heat conduction that stop the steepening of the waveform. On the other hand, in the
case of bores of water waves, in addition to such diffusion effects (i.e., energy dissipation due

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-011.jpg&w=144&h=98
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to breaking), a totally different mechanism of “dispersion” of surface waves also contributes to
energy consumption of bores. The property that the wave propagation velocity depends on the
wavelength or frequency is called the “dispersion” of the wave. We will discuss the dispersion of
water surface waves in detail in the next chapter.

For more detailed information on the overall contents of this chapter, refer to [4] and [5],
for example.
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C H A P T E R 3

Basics of Linear Water Waves
As stated in the Preface, this book is aimed at an introduction to physical aspects

of various nonlinear phenomena of waves in general. However, it is beneficial to
use some concrete wave to explain various phenomena and the mechanisms behind
them. So we will take the water waves as a suitable example for this purpose which is
ubiquitous in our everyday life. Water wave is totally different from light and sound
waves in that it propagates at a different speed depending on the wavelength and
frequency. This property is called “dispersion.” The dispersion plays crucial roles in
all of the various wave phenomena treated in the rest of this book. In this chapter we
mainly focus on the dispersion of waves, and will neglect the effect of nonlinearity
by assuming that the amplitude of the wave is infinitesimally small.

3.1 DISPERSION RELATION
Let the temporal and spatial development of some physical quantity u.x; t/ be governed by a
PDE. Then the first thing to do to study the wave phenomena in this system is to find the linear
sinusoidal wave solution like

u.x; t/ D A cos.kx � !t C �0/: (3.1)

This is the most basic element of any kind of wave phenomenon.
Suppose that there is a long wave flume equipped with a wave maker at one end, and

the side of the tank is transparent so that waves can be seen from the side (see Fig. 3.1). If
a photograph of the water surface waveform is taken through the side at a certain time, the
waveform seen is a function of only x, and it is called the spatialwaveform.The spatial waveform
u.x; t0/ at time t0 is given by

u.x; t0/ D A cos.kx C �1/; �1 D �!t0 C �0 .D const./: (3.2)

The spatial distance between adjacent crests or troughs is the wavelength and is denoted here
by � [m]. The wavelength is the spatial distance required for the phase to change by 2� , so the
relation � D 2�=k holds.1 From this, k expresses the number of waves in 2� [m] and is called
wavenumber. The unit of k is [rad/m].

1In general, the expression inside the parentheses of cos.� � � / or sin.� � � / is called the phase.
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Wave Maker Wave Gauge

Figure 3.1: A wave flume equipped with a wave maker.

Next, suppose that a wave gauge is installed at some fixed location along the wave flume
to observe the rise and fall of the water surface there as waves go through the location. The wave-
form thus measured is a function of only t and is called the temporal waveform. The temporal
waveform u.x0; t / at x D x0 is given by

u.x0; t / D A cos.!t C �2/; �2 D �kx0 � �0 .D const./: (3.3)

The temporal distance between adjacent crests or troughs in the temporal waveform is the period
and is denoted here by T [s]. The period is the interval of time required for the phase to change
by 2� , so there is a relation of T D 2�=! between T and !. Thus, ! expresses the number of
waves in 2� [s] and is called angular frequency. The unit of ! is [rad/s].2

The k and ! need to satisfy some specific relation in order for (3.1) to satisfy the governing
PDE (and also the boundary conditions if imposed). This relation is called the linear dispersion
relation of the system. For example, let us imagine a train of waves which is generated by mov-
ing the wave maker at some fixed frequency. If you move the wave maker quickly, short waves
would be generated, and if you move it slowly, long waves would be generated and transmitted
through the wave flume. This clearly indicates that k and ! are linked with each other in order
to satisfy the governing equation of the system. The specific functional form of the linear dis-
persion relation of course depends on the individual system. For example, the electro-magnetic
wave has its own dispersion relation which is totally different from that of the surface water
waves, as shown below.

The position of a crest of the spatial waveform of the linear sinusoidal wave (3.1) at t D t0
is a point where the phase kx � !t0 C �0 is exactly equal to 2m� (m is integer). Let us focus
on a particular crest whose phase corresponds to 2m� . Even if the position of this crest moves
after a while, the value of the phase at that point remains 2m� in order the crest remains to be
so. Therefore, assuming that the crest moves a small distance �x during a short time �t ,

kx � !t0 C �0 D k.x C�x/ � !.t0 C�t/C �0 D 2m�; (3.4)

that is
k�x � !�t D 0: (3.5)

2The frequency of f [Hz] means the number of oscillation in one second, and is related to ! by f D !=.2�/.
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From this it can be seen that the wave velocity c is given by

c D
�x

�t
D
!

k
: (3.6)

This wave velocity is the velocity at which the wave phase propagates, and it is called phase
velocity in distinction from the group velocity described later.

Rewriting (3.1) as

u.x; t/ D A cos
h
k
�
x �

!

k
t
�
C �0

i
; (3.7)

it can be seen that u, which is a function of x and t , depends only on the combination � D
x � .!=k/t . This indicates that u.x; t/ is translating at a speed of !=k, as we studied at the
beginning of Chapter 1, and this also explains that the wave speed is given by !=k. Furthermore,
this expression for c can also be obtained from the fact that the wave travels one wavelength
during one period, that is,

c D
�

T
D
2�=k

2�=!
D
!

k
: (3.8)

Since the units of ! and k are [rad/s] and [rad/m], respectively, c given by !=k has unit of [m/s]
as it should.

The linear dispersion relation makes ! a function of k. Therefore, the wave velocity c given
by (3.6) is also generally a function of k except in the special case that! is directly proportional to
k. According to the Fourier analysis, any initial waveform can be considered to be a superposition
of sinusoidal waves of various wavelengths.3 If the wave velocity c.k/ depends on k and hence
on the wavelength �, the various wavelength components that make up the initial waveform
propagate at different speeds, and as a result the waveform will change with time. Even if the
initial waveform is localized in a narrow space, the waveform will be scattered more and more
with time. From this, a wave whose c.k/ is not constant but depends on k is called dispersive
wave.

As described in the next section, the water wave is dispersive. Since the wave has the
property of dispersion except in the special case in which the dispersion relation is given by
! D c0k (c0 is a constant), there are many kinds of dispersive waves other than water surface
waves, for example, global-scale waves called Rossby wave that alternately brings high and low
pressures, and various types of waves in plasma.On the other hand, light (electromagnetic waves)
and sound waves that are familiar from high school classes are representative of rare types of
waves in the sense that they are not dispersive (see the column at the end of this chapter).

When actually finding the dispersion relation, it is more convenient to use Euler’s formula

ei�
D cos � C i sin � (3.9)

3Knowledge of Fourier analysis is essential in the analysis of wave phenomena. The minimum knowledge of Fourier
analysis is summarized in Appendix C.
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to express the linear sinusoidal wave solution in the complex form as

u.x; t/ D a ei.kx�!t/
C c.c.; a D

A

2
ei�0 ; (3.10)

instead of the real expression (3.1). Here “c.c.” stands for the complex conjugate of the expression
that precedes it.

When the governing equation is a constant coefficient linear PDE like

P

�
@

@t
;
@

@x

�
u D 0; (3.11)

where P is an arbitrary polynomial, substituting (3.10) causes a replacement

@

@t
�! �i!;

@

@x
�! ik; (3.12)

and (3.11) becomes
P.�i!; ik/ a ei.kx�!t/

D 0: (3.13)

Here the condition that the amplitude a is not zero immediately gives the dispersion relation

P.�i!; ik/ D 0: (3.14)

The above procedure applies only to the case where the governing equation is a linear PDE
with constant coefficients. If the governing equation is nonlinear, a linear sinusoidal wave (3.10)
cannot generally be a solution. In the nonlinear case, a procedure called linearization is required
before obtaining the sinusoidal wave solution and the dispersion relation. Linearization is the
transformation of the governing equation into a linear PDE consisting of only first-order terms
in u.x; t/, by assuming that the wave amplitude is very small. A simple example is given below,
so you can see the meaning of this linearization there.

EXAMPLE 1: DISPERSION RELATION OF THE KDV EQUATION
Find the dispersion relation of the KdV equation4

@u

@t
C c0

@u

@x
C ˛u

@u

@x
C ˇ

@3u

@x3
D 0: (3.15)

[Solution]
Equation (3.15) is nonlinear due to the third term. Under the linear approximation that

u is very small, the third term which contains u twice by multiplication is ignored considering

4The KdV equation is a well-known approximate equation for water waves with long wavelengths and will be dealt with
in detail in the next chapter.
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it is much smaller than the other terms which contain u only once. This procedure is called the
linearization of the equation, giving the linearized KdV equation

@u

@t
C c0

@u

@x
C ˇ

@3u

@x3
D 0: (3.16)

Substituting (3.10) to this yields�
.�i!/C c0.ik/C ˇ.ik/

3
�
a ei.kx�!t/

D 0; (3.17)

giving the linear dispersion relation as follows:

!.k/ D c0 k � ˇ k
3: (3.18)

This gives a real ! for a real k, so the wave propagates neutrally with neither amplification nor
attenuation. Also, the wave velocity c.k/ is given by

c.k/ D
!.k/

k
D c0 � ˇ k

2; (3.19)

which depends on k, so this is a dispersive wave. |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If there are N dependent variables, and therefore the basic equation is a system of simul-

taneous PDEs, we adopt the form

u.x; t/ D

0B@a1

:::

aN

1CA ei.kx�!t/
C c.c. (3.20)

as the sinusoidal wave solution. Substituting (3.20) into the linearized system of constant-
coefficient linear PDEs causes replacement (3.12), and yields N homogeneous simultaneous
linear equations for the amplitude vector a D t .a1; : : : ; aN /24 pij

35
0B@ a1

:::

aN

1CA D
0B@ 0
:::

0

1CA ; (3.21)

where P D
�
pij

�
is a N �N matrix determined by the system of equations. Then the condition

detP ¤ 0 for a nontrivial solution (i.e., a ¤ 0) to exist gives the dispersion relation. If each of
the systems of PDE gives the time derivative of each dependent variable such as @ui=@t D � � � ,
the dispersion relation becomes an N th order algebraic equation for !, and N different types
of waves (wave mode) exist. Then the solution vector a corresponding to each ! teaches us the
relationship of the amplitude between dependent variables in that wave mode. Let us try one
specific example next.
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EXAMPLE 2: THE LINEAR DISPERSION RELATION OF THE LONG WAVE
EQUATION
Find the linear dispersion relation of the long water wave equation

@�

@t
C
@Œ.hC �/u�

@x
D 0;

@u

@t
C u

@u

@x
C g

@�

@x
D 0; (3.22)

mentioned at the end of Chapter 1 and Appendices B and F. Here � is surface displacement, u
is horizontal velocity, and h is water depth (constant).

[Solution]
First, linearizing (3.22) around the undisturbed state .�; u/ D .0; 0/,

@�

@t
C h

@u

@x
D 0;

@u

@t
C g

@�

@x
D 0: (3.23)

Assuming that �
�

u

�
D

�
O�

Ou

�
ei.kx�!t/

C c.c.; (3.24)

and substituting into (3.23) yields�
�i! h ik

g ik �i!

��
O�

Ou

�
D

�
0

0

�
: (3.25)

The condition that this has a nontrivial solution, that is, the determinant of the coefficient matrix
is 0 gives the dispersion relation as follows:

!2
D gh k2

�! ! D ˙
p
gh k; c D

!

k
D ˙

p
gh: (3.26)

It can be seen that, in this system, there are two wave modes for one wavenumber k with the
same frequency but opposite directions of propagation. It is a non-dispersive wave because its
propagation speed is ˙

p
gh and does not depend on k. For waves traveling in the positive

direction ! D
p
gh k, Ou D

p
gh � O�=h, and for those traveling in the negative direction ! D

�
p
gh k, Ou D �

p
gh � O�=h, respectively. From this, we can see that the velocity u at which the

water particle actually moves is not the velocity of the wave c .D
p
gh/ itself but multiplied by

the ratio of the wave height � to the depth h.
A tsunami is a typical long water wave, and its property is expected to follow this long wave

equation. The propagation velocity of tsunami is given by
p
gh within the linear approximation.

The average water depth in the Pacific Ocean is about 4,000 m, and considering g D 9:8 m/s2,
the propagation velocity of a tsunami traveling offshore of the PacificOcean is as great as 200m/s
or about 700 km/h. Nevertheless, small fishing boats that encounter the tsunami offshore are
not so affected, because the velocity of water movement caused by the tsunami is not the great



3.2. LINEAR SINUSOIDAL WAVE SOLUTION OF WATER WAVE 41
propagation velocity itself but it is only the value multiplied by the ratio of the amplitude to the
depth (if the amplitude is 1 m, 1/4000) to it. |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In the discussion so far, the space variable is only x, and the wavelike behavior ei.kx�!t/

is assumed in that direction. However, when the space is multi-dimensional, it often happens
that the solution behaves like a wave with respect to one coordinate only, while showing an
eigenfunction-like behavior determined from boundary conditions in other directions. The sur-
face water wave, which is often mentioned as an example throughout this book, is a wave of this
kind. In the case of such waves, more complex dispersion relations can occur as we will see in
the next section.

3.2 LINEAR SINUSOIDAL WAVE SOLUTION OF WATER
WAVE

3.2.1 BASIC EQUATIONS OF WATER WAVE
Let us consider waves propagating on the surface of a water layer of depth h. Water is assumed
to be inviscid and incompressible fluid, and its velocity field is irrotational and is expressed as
the gradient of the velocity potential �.x; z; t/ which in turn satisfies the Laplace equation.5 Let
�.x; t/ denote the free surface displacement, x axis be in the propagation direction and the z
axis be vertically upward as shown in Fig. 3.2. Then the governing equations and the boundary
conditions are given as follows:

�xx C �zz D 0; �h � z � �.x; t/ (3.27a)

�t C gz C
1

2

�
�2

x C �
2
z

�
�
�

�

�xx

f1C �2
xg

3=2
D 0; z D �.x; t/ (3.27b)

�t C �x�x D �z; z D �.x; t/ (3.27c)
�z D 0; z D �h: (3.27d)

Here g is gravity acceleration g D 9:8m/s2, � is water density � D 1000 kg/m3, and � is surface
tension coefficient, and � D 0:074N/m for the interface between water and air at room temper-
ature. The origin of z is taken at the mean water level, so the average of �.x; t/ with respect to
x is zero.

The Laplace equation (3.27a) is a consequence of the assumption of irrotational flow of
incompressible fluid, and is a field equation that should hold for the whole region occupied by
water. Equation (3.27b) is a dynamic boundary condition that requires the pressure of water
to be equal to the atmospheric pressure at the water surface, and (3.27c) and (3.27d) are kine-
matic boundary conditions requiring that the water does not penetrate the water surface and the
bottom, respectively.

5The minimum knowledge of fluid mechanics necessary for deriving these basic equations is summarized in Appendix D.
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x
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Figure 3.2: A water layer with free surface.

3.2.2 SINUSOIDAL WAVE SOLUTION AND LINEAR DISPERSION
RELATION

Since the linear sinusoidal wave solution is the basis for all future discussions, the derivation
process is shown in detail below.

If we ignore all the nonlinearities in the basic equations (3.27) to consider waves of small
amplitude, we obtain

�xx C �zz D 0; � h � z � 0 (3.28a)
�t C g� �

�

�
�xx D 0; z D 0 (3.28b)

�t D �z; z D 0 (3.28c)
�z D 0; z D �h: (3.28d)

It should be noted here that the linearization process not only has omitted the nonlinear terms
in the equations but also changed the place where the surface boundary conditions are imposed
from the actual free surface z D �.x; t/ deformed by the wave to the static water surface z D 0
before being perturbed by the wave. For example, let us consider �.x; z; t/ contained in (3.27c),
which should originally be evaluated at z D �.x; t/. When expressed by the Taylor expansion
around z D 0,

�.x; z D �; t/ D �.x; 0; t/C �
@�.x; 0; t/

@z
C
1

2Š
�2 @

2�.x; 0; t/

@z2
C � � � : (3.29)

All terms after the second term on the right side are nonlinear terms which contains the wave
quantities such as � and � more than twice, and can be ignored in the linear theory that assumes
small amplitude. Thus, the boundary conditions at the free surface z D �.x; t/ can be replaced
by those at the undisturbed surface z D 0.
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Here we assume that the sinusoidal wave solution is of the form:

�.x; t/ D a ei.kx�!t/
C c.c.; �.x; z; t/ D f .z/ ei.kx�!t/

C c.c.: (3.30)

Since we do not know the z dependence of �, so for the time being we leave it as f .z/. Substi-
tuting this into (3.28a) gives

d2f

dz2
� k2f D 0; (3.31)

showing that f .z/ should be a linear combination of ekz and e�kz . In addition to this, consid-
ering the condition df .z/

dz

ˇ̌̌
zD�h

D 0 required by (3.28d), f .z/ is obtained as follows6:

f .z/ D C coshŒk.z C h/�: (C arbitrary complex constant) (3.32)

Substituting this result into (3.28c) gives

� i!a D
df .z/

dz

ˇ̌̌̌
zD0

D k C sinh kh; �! C D
�i!a

k sinh kh
: (3.33)

And substituting these into (3.28b) yields

� i!f .0/C ga �
�

�
.ik/2a D 0;

�! �i!

�
�i!a

k sinh kh

�
cosh khC

�
g C

�

�
k2

�
a D 0; (3.34)

from which the linear dispersion relation

!2.k/ D

�
gk C

�

�
k3

�
tanh kh; (3.35)

and the sinusoidal wave solution

�.x; t/ D A cos.kx � !t C �0/; (3.36a)

�.x; z; t/ D
!A

k

coshŒk.z C h/�
sinh kh

sin.kx � !t C �0/ (3.36b)

are obtained. It can be seen that the phase velocity c.k/ is given by

c.k/ D
!

k
D ˙

s�
g

k
C
�

�
k

�
tanh kh: (3.37)

6cosh x, sinh x are defined by cosh x D .ex C e�x/=2, sinh x D .ex � e�x/=2, respectively, and along with tanh x
mentioned previously, are called the hyperbolic functions.
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Figure 3.3: Phase velocity of water wave. Solid: capillary gravity wave; dotted: gravity wave
(water depth is infinite).

Figure 3.3 shows the phase velocity (3.37) of the surface wave as a function of wavelength
�.D 2�=k/, when the water depth h is infinite. The solid line in the figure is (3.37) itself, and
the dotted line is the value when ignoring the effect of surface tension with � D 0. The terms g
and � in parentheses in (3.35) and (3.37) indicate the contribution of gravity and surface tension
as the restoring force, respectively. If we let km be the wavenumber where the contribution of
gravity and surface tension become equal,

gkm D
�

�
k3

m �! km D

r
�g

�
: (3.38)

In the case of the interface between water and air, km D 3:6 rad/cm, and the corresponding
wavelength is about �m D 2�=km D 1:7 cm. Equation (3.35) indicates that the contribution of
gravity to !2 is proportional k, while that of surface tension is proportional to k3. Therefore, the
gravity becomes dominant as the wavelength becomes longer (k < km) and the surface tension
becomes dominant as the wavelength becomes shorter (k > km). In the case of water and air, for
example, at � D 10 cm, the contribution from surface tension already decreases to less than 3%
of the contribution from gravity. In ocean waves, most of the energy is possessed by waves with
wavelengths of several tens of meters or more, and for such waves, the effect of surface tension
can be ignored almost completely. From this point onward, we will ignore surface tension and
consider water waves taking into account only of gravity as the restoring force, unless stated
otherwise. Such wave is called gravity wave.7

As Fig. 3.3 shows, when the water depth is infinite, the phase velocity of water wave takes
a minimum value of 0.23 m/s at the wavelength �m, and it becomes faster if the wavelength is
longer or shorter than �m. The dotted line in the figure is the phase velocity of the gravity wave
neglecting the effect of surface tension. It can be confirmed that as the wavelength becomes
longer than �m, the phase velocity of water wave considering both gravity and surface tension

7Be careful not to confuse it with the “gravitational wave” that is the wave of distortion of space-time that Einstein
predicted its existence in the theory of general relativity.
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rapidly approaches to that of the gravity wave, that is, the effect of surface tension becomes
negligible.

However, the micro-scale wave breaking, for which the surface tension plays effectively,
may play an important role in the exchange of materials (such as CO2 and aerosols) and energy
between the atmosphere and the ocean as a total amount. In remote sensing of sea waves by
satellites, etc., electromagnetic waves called “microwaves” of several centimeter in wavelength
are used. What directly participates in the reflection of these electromagnetic waves through
Bragg scattering is water waves of a few centimeter wavelength, that is, waves for which surface
tension works effectively. For reasons as above and others, it should be noted that the study
of wave phenomena on a short scale that are directly affected by surface tension has no less
importance than the study of gravity waves. Also, if it is not limited to sea surface waves, there
are many situations where surface tension plays a decisive role, for example, flow phenomena in
a microgravity environment such as the International Space Station (for example, how to make
a more homogeneous silicon wafer not affected by gravity) or flow phenomena on a microscale
such as those in capillaries of human body or micromachines.

The dispersion relation and phase velocity of gravity wave are given by

!.k/ D
p
gk tanh kh; c.k/ D

!

k
D

r
g

k
tanh kh; (3.39)

by putting � D 0 in (3.35). The sinusoidal wave solution (3.36a) and (3.36b) can be used as they
are with understanding that ! is given by (3.39) instead of (3.35). The relationship between c
and � .D 2�=k/ is shown in Fig. 3.4. Here, c and � are normalized by the linear long-wave
phase speed

p
gh and the water depth h, respectively. As can be seen from the figure, when

the water depth is fixed, the phase velocity of the gravity wave increases monotonically as the
wavelength becomes longer, and it takes the maximum value

p
gh in the limit �!1.

c
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Figure 3.4: Phase velocity of gravity wave as a function of wavelength.

3.2.3 DEEP WATER (OR SHORT WAVE) LIMIT
According to (3.39), the wave velocity c.k/ is given by

p
g=k in the limit kh!1 where the

water depth is very deep compared to the wavelength. Numerically,
p

tanh kh takes values be-
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tween 0.97 and 1 for h > 1:75=k � 0:28�. This implies that c given by (3.39) differs from the
limiting value

p
g=k by less than 3% when the water depth is more than 30% of the wavelength.

Thus, at least with regard to the wave velocity, if the water depth is more than only 30% of the
wavelength, it will be almost the same as when the water depth is infinitely deep. If we rewrite
the dispersion relation of deep water gravity wave !2

D gk to the relations between � [m],
c [m/s], T [s], we obtain

� D
g

2�
T 2
D 1:56T 2; c D

�

T
D 1:56T: (3.40)

These equations are useful for estimating the wavelength and wave speed from the wave period.
For example, the wavelength and the wave speed of waves with a period of 8 s in the open ocean
can be immediately estimated to be about 100 m and 12.5 m/s, respectively.

3.2.4 SHALLOW WATER (OR LONG WAVE) LIMIT
In the shallow water limit kh! 0, c.k/!

p
gh since tanh kh! kh.8 That is, when the wave-

length becomes very long compared to the water depth, the wave velocity becomes gradually
independent of the wavelength, and the dispersion disappears.

p
tanh kh=

p
kh takes numerical

values between 0.97 and 1 when kh < 0:43. This means that if � > 15h, the difference with the
phase speed of the truely long wave

p
gh is less than 3%. However, remembering that the water

depth can be regarded virtually infinite if the water depth is more than 30% of the wavelength,
the condition for being regarded as a shallow water is more stringent that it needs to be less than
7% of the wave length.

The average water depth in the Pacific Ocean is about 4000 m. The condition kh < 0:43
for long waves for h D 4000 m corresponds to about 58 km or more in wavelength and about
300 s in period. A tsunami with a period of about 10 min is completely within the range that can
be treated as a long wave. That is, even the ocean with a depth of 4000 m is a very shallow water
from the viewpoint of the tsunami. The wave velocity of the long wave is given by

p
gh, so the

velocity of the tsunami crossing the Pacific Ocean is about 200 m/s, or 700 km/h or more. The
tsunami generated by the earthquake off the coast of Chile in South America is known to reach
coasts of Japan in almost a full day. Considering that the distance between Japan and Chile is
approximately 17,000 km, this required time is quite consistent with the speed of a long wave.

3.2.5 REFRACTION
When the ocean waves pass through a region of decreasing water depth and gradually approach
the coastline from the offshore, their frequency ! tends to be kept approximately constant.9 Ac-
cording to the dispersion relation (3.39) of the gravity wave in finite water depth, the wavelength
� and the phase velocity c become increasing functions of the water depth h when ! is constant.

8The Taylor expansion of tanh x around x D 0 is tanh x D x � x3=3 C 2x5=15 C � � � , so tanh x � x as x � 1.
9This property is addressed in Section 6.1 in relation to the group velocity.
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Therefore, the wavelength and velocity decrease as the wave enters from the offshore to the shal-
low region. For example, in the case of a wave with a period of 8 s, � D 99:8 m, and c D 12:5
m/s in deep water, but when it reaches a point with h D 5 m, � D 53:14 m, c D 6:63 m/s, and
both decrease to about 1/2 of the offshore values. (See Example 3.)

When standing on a beach, the waves always seem to be coming straight from the offshore
toward us. If the beach is curved, the normal vector of the shoreline (i.e., the vector pointing
straight to the offshore) points in different directions at different points on the shoreline. Nev-
ertheless, no matter where we are on the beach, the waves come from the direction of the normal
vector, with the wave peaks being almost parallel to the beach. The waves coming to the beach
when there is no wind around the beach are the waves that were generated by a storm at a distant
place several days ago, which are called the swell. Therefore, if you observe the swell offshore
from the beach, the direction in which the swell comes is the direction in which the storm that
generated them was. Bearing this in mind, it’s a little strange that waves come in at a right angle
to the shoreline no matter where we are on a curved beach.

The phenomenon that the wave direction tends to align to the depth contour near the
beach in this way is due to the nature of the gravity wave that the wave velocity decreases as the
water depth decreases as seen above. As shown in Fig. 3.5, when the wave is incident obliquely
to the coast, the speed of the part that first enters the shallow area is slower, but the part that is
still in the deep area continues to propagate at a high speed. As a result, the crest always rotates
in the direction toward the coast. When a beam of light is incident on the water surface from
the air, the light bends toward the water in which the speed of light is slower than in the air. This
is the phenomenon of refraction and is familiar to anyone. Just the same thing is happening for
water waves when approaching the coast (but not only once but continuously). Figure 3.6 shows
an image of the change of the direction (refraction) of waves. As can be seen from the figure,
the energy of waves tends to concentrate at the cape, and it conversely tends to be dispersed in
the bay area. When driving a car along the coastline, it is often observed that waves are broken
at the tip of the cape and white waves are standing. This is because the energy of the waves tends
to be concentrated there and the wave height becomes high. On the other hand, the bathing
beaches where we want the waves to be calm are created in the bay area where the energy of the
waves is dispersed and the wave height is low.

EXAMPLE 3: FINDING THE WAVELENGTH FROM THE PERIOD
Find the wavelength and wave velocity at a depth of 5 m of the gravity wave with a period of
8 s.

[Solution]

It is easy to find the frequency for a given wavenumber using the dispersion relation (3.39).
However, given the period or frequency, it is not so easy to find the corresponding wavenumber
or wavelength. Here, let’s find an approximate solution numerically using Newton’s method
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Beach

Depth Contours

Crest L
ine

Figure 3.5: Alignment of crest line to the depth contour.

Bay Bay

Cape

Figure 3.6: Wave refraction around cape and bay.

(Newton–Raphson method), which is a method to find the solution of a nonlinear equation
numerically.

First, let’s review Newton’s method briefly. Consider finding the solution of the nonlinear
equation f .x/ D 0 by an iterative method. Let the nth approximate solution of the iteration
be represented by xn. Since xn has not yet reached the true solution, f .xn/ ¤ 0. By Taylor
expanding f .x/ around xn,

f .x/ D f .xn/C f
0.xn/.x � xn/CO.�x

2/: (3.41)

If we ignore the second- or higher-order terms of the expansion here and request that the next
approximate solution xnC1 to satisfy f .xnC1/ D 0, then we obtain

0 D f .xnC1/ D f .xn/C f
0.xn/.xnC1 � xn/ H) xnC1 D xn �

f .xn/

f 0.xn/
: (3.42)

Since we have ignored the second- and higher-order terms of the expansion, this xnC1 cannot be
a true solution, but it can be an improved approximate solution than xn. The numerical method
for finding the solution of the nonlinear equation f .x/ D 0 by the recursion (3.42) is known as
Newton’s method.
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In the case of this example, let

f .k/ WD gk tanh.kh/ � !2; g D 9:8; h D 5:0; ! D
2�

T
D
�

4
I (3.43)

then the recursion formula of the Newton’s method becomes

knC1 D kn �
gk tanh.kh/ � !2

g tanh.kh/C gkhŒ1 � tanh2.kh/�
: (3.44)

If, for example, a value k0 D !
2=g corresponding to a period of 8 s when h!1 is adopted as

the starting value k0 and (3.44) is repeated, it converges to k D 0:118435696 � � � in about 4 or 5
iterations. From this, the wavelength � and the wave velocity of the wave with period of 8 s at
a water depth of 5 m are given as

� D 2�=k � 53:1m; c D !=k � 6:63m=s: (3.45)

|
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3.2.6 MOTION OF WATER PARTICLE
According to the sinusoidal wave solution for gravity waves,

�.x; t/ D A cos.kx � !t/; (3.46a)

�.x; z; t/ D
!A

k

coshŒk.z C h/�
sinh kh

sin.kx � !t/; (3.46b)

! D
p
gk tanh kh; (3.46c)

the motion of a certain water particle, i.e., the temporal change of its coordinates Œx.t/; z.t/� is
described by

dx

dt
D u.x; z; t/ D

@�

@x
D !A

coshŒk.z C h/�
sinh kh

cos.kx � !t/; (3.47a)
dz

dt
D w.x; z; t/ D

@�

@z
D !A

sinhŒk.z C h/�
sinh kh

sin.kx � !t/: (3.47b)

Since the unknown functions x.t/; z.t/ are included in the trigonometric functions on the right
sides, x.t/,z.t/ cannot be solved explicitly as it is. However, in the linear wave theory that the
amplitude is infinitesimal, x.t/ and z.t/ on the right side can be replaced by the positions x0,z0

when the wave amplitude is zero. So,

dx

dt
� !A

coshŒk.z0 C h/�

sinh kh
cos.kx0 � !t/; (3.48a)

dz

dt
� !A

sinhŒk.z0 C h/�

sinh kh
sin.kx0 � !t/: (3.48b)
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This gives

x � x0 D �Rx sin.kx0 � !t/; Rx D A
coshŒk.z0 C h/�

sinh kh
; (3.49a)

z � z0 D Rz cos.kx0 � !t/; Rz D A
sinhŒk.z0 C h/�

sinh kh
: (3.49b)

If t is eliminated from this equation, it can be seen that the water particle draws an elliptical
orbit

.x � x0/
2

R2
x

C
.z � z0/

2

R2
z

D 1; (3.50)

with a major (horizontal) axis Rx and minor (vertical) axis Rz , as shown in Fig. 3.7.

Figure 3.7: Elliptic orbit of water particle.

From this result we can see the properties of the wave motion as follows.

1. At z0 D 0, that is, on the mean water surface, the length of the minor axis Rz coincides
with the amplitude A of the surface displacement �.

2. In the case of virtually deep water waves .kh� 1/, except for the vicinity of the bottom,
Rx � Rz � Ae

kz0 , so the motion of water particle follows a circular orbit.
Also, its radius decreases exponentially as it goes away from the water surface. Specifically,
the wave amplitude decreases by e�2� � 1=535 every time the distance from the surface
increases by one wavelength. When swimming in a swimming pool or the sea, many read-
ers may have experienced that only a little dive leads to a rapid decrease of the wave motion
even if there is a large wave on the surface.

3. In the case of virtually shallow water .kh� 1/,

Rz=Rx D tanh Œk.z0 C h/�! 0; .kh! 0/ (3.51)

showing that the ellipse becomes a horizontally crushed shape, and the water particle move
almost in the horizontal direction only.

It may seem a little strange that the water particles only move in an elliptical motion and
almost stays in the same place forever, but the waves go on and on. Figure 3.8 shows the relation
between the wave propagation and the circular motion of water particles in the case of deep
water wave. You can see how the water particles transmit the (phase of ) waves by performing
circular motion with slight phase differences.
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Figure 3.8: Wave propagation and circular motion of water particles.

Note that, under the linear approximation assuming infinitesimal amplitude adopted here,
the orbit of each water particle is a closed ellipse, and therefore the wave does not produce mass
flux. However, this does not hold when going to the nonlinear theory that takes into account
the finiteness of wave amplitude. When the water depth is deep, the water particles in the water
perform circular motion, but the radius of this circular motion becomes smaller exponentially
as the distance from the surface gets larger. When the amplitude of the wave increases, the part
of the circular motion of a water particle that travels in the same direction of the wave passes
a slightly shallower part, so the radius of movement at that time is a little larger than the value
at the center, while the part that moves backward the particle moves in a little deeper part, so
the radius of movement is a little smaller. From this difference in radius and velocity of water
particle in different part of the circular motion, the trajectory of water particle changes from a
closed circular trajectory to a trajectory that shifts slightly forward with each rotation, resulting
in a substantial mass flux that is proportional to the square of the wave amplitude. This is called
the Stokes drift.

3.2.7 DISPERSION RELATION BY DIMENSIONAL ANALYSIS
In Section 3.2, the linear dispersion relation is derived by solving the system of basic equations
of water waves. However, using the method of “dimensional analysis” introduced below, this
dispersion relation can be found much more easily.

Before doing that, let us first start with a simpler problem of finding the period T [s] of a
single pendulum as shown in Fig. 3.9 consisting of a weight of massm [kg] and a string of length
l [m]. If we start from the equation of motion seriously, it would become as follows. Newton’s
second law of motion for the tangential direction gives

ml R� D �mg sin �: (3.52)

If the amplitude is small, sin � can be approximated by � , then

ml R� D �mg� �! R� D �!2�; ! �
p
g=l; (3.53)

and the general solution for this is given by

�.t/ D A cos.!t C �0/; A; �0 W const. (3.54)

This solution shows that the period T of the pendulum is given by T D 2�=! D 2�
p
l=g.
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Figure 3.9: A single pendulum.

However, there is a totally different way as follows to find this period T which can be
carried out by an elementary school student who does not know Newton’s law or differential
equations, or do not even know the differentiation. First, the factors that may affect the period
T [s] are considered to be the length l [m] of the pendulum, mass of the weightm [kg], and the
gravitational acceleration g Œm=s2�. Therefore, T should be represented by some combination of
l ,m, and g. Since the unit of T is [s], we need to find a combination of l ,m, and g which has the
same unit [s]. Then there is only

p
l=g that meets this requirement. From this alone, it can be

inferred that T should be proportional to
p
l=g, i.e., T D ˛

p
l=g, with ˛ being a dimensionless

number.
A method that considers the relationship between physical quantities by relying only on

units of the quantities (more precisely, dimensions) in this way is called the dimensional analy-
sis. Since it is not possible to determine the dimensionless coefficient ˛ in dimensional analysis,
it is not possible to know the value of T itself. But important properties of T , such as it is pro-
portional to

p
l=g and it does not depend of the massm, can be known without any complicated

calculations.
Let’s apply this method of dimensional analysis to the wave velocity of the gravity wave.

Factors that may influence the wave velocity c [m/s] include the wavelength � [m], the density
� Œkg=m3� of water (or the liquid, in general), gravitational acceleration g Œm=s2�, and the water
depth h [m]. First, let us consider the deep water wave limit h=�!1. The movement of water
generated by the wave decays exponentially rapidly as it moves away from the free surface as
seen above. Therefore, when the water depth is deep enough, the influence of the surface wave
does not reach the bottom of water, and as a result, the surface wave does not recognize where
the bottom is. In such a situation, the water depth h should not affect c, so c should be able to
be written by a combination of �, �, and g. Considering the combination of these three that has
the same unit [m/s] as c, there is only

p
g�. If this fact is written as the relation between ! and
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k,

c D ˇ
p
g� D Q̌

p
g=k �! ! D ck D Q̌

p
gk: (3.55)

Thus, we can get the same dispersion relation of deep water wave as that derived from the system
of basic equations, except for the undetermined dimensionless constant ˇ.

Next, let us consider the shallow water limit �=h!1. What is important in this limit
is not the specific value of � but only the fact that � is much larger than h. Hence, � seems not
to appear in the expression for c. If this guess is correct, c can be written by the combination of
h, �, and g, and a relationship as

c D 
p
gh; ! D 

p
gh k (3.56)

is obtained by searching for a combinationwhose unit is [m/s].This is consistent with the shallow
water limit of the linear dispersion relation derived from the basic system of equations again,
except for the dimensionless constant  .

These dimension-based considerations are often used throughout this book. The basic
theorems and application examples of dimensional analysis are summarized in Appendix E.

3.3 WAVE ENERGY AND ITS PROPAGATION VELOCITY
In this section, we will consider the energy associated with a sinusoidal gravity wave and its
propagation velocity.

3.3.1 KINETIC ENERGY AND POTENTIAL ENERGY
Let V be the region occupied by water which corresponds to one wavelength of the wave, and
S be the part of the boundary of V that corresponds to the free surface. Then the total amount
of kinetic energy in V is given by•

V

1

2
�v2 dV D

1

2
�

•
V

.r�/2 dV D
1

2
�

•
V

r � .�r�/ dV D
1

2
�

“
S

�
@�

@n
dS: (3.57)

This is an exact expression that does not require the approximation of small amplitude. In the
first equal sign, it is assumed that the water is incompressible and the density � can be treated
as a constant, and moreover the motion is irrotational and the velocity vector v is given by the
velocity potential � as v D r�. In the second equal sign it is used that � satisfies the Laplace
equation (3.27a), and in the third equal sign the Gauss’s divergence theorem, the periodicity of
the wave in the horizontal direction and the bottom boundary condition @�=@n D 0 are used.
Here @�=@n represents the derivative of � in the outward normal direction.

Under the linear approximation, the surface element dS of the free surface can be replaced
by the surface element of the flat surface before being deformed by the wave, and @�=@n can
also be replace by a vertical derivative. Then the kinetic equation K per unit horizontal area of a
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linear wave is given by

K D
1

2
�

�
�
@�

@z

�
zD0

: (3.58)

Also, this can be rewritten as

K D
1

2
�

1

k tanh kh

�
@�

@t

�2

(3.59)

by using the linearized kinetic boundary condition at the free surface

@�

@z

ˇ̌̌̌
zD0

D
@�

@t
(3.60)

and the relation derived from the linear sinusoidal wave solution (3.36) as follows:

�jzD0 D
!A

k

1

tanh kh
sin.kx � !t/ D 1

k tanh kh
@�

@t
: (3.61)

The average over one period K of the kinetic energy per unit horizontal area is given by

K D
1

2
�

1

k tanh kh

�
@�

@t

�2

D
1

4
�

!2

k tanh kh
A2
D
1

4
�gA2; (3.62)

where (3.39) has been used.10
On the other hand, the potential energy P per unit horizontal area, relative to the undis-

turbed free surface � D 0 is given by

P D

Z �

0

�gz dz D
1

2
�g�2; (3.63)

hence the average of the potential energy P per unit horizontal area is given by

P D
1

2
�g�2 D

1

4
�gA2: (3.64)

After all, the average energy E of wave energy per unit horizontal area is given by

E D K C P D
1

2
�gA2: (3.65)

10For example, the average over one period of cos2.kx � !t/ is given by

cos2.kx � !t/ �
1

T

Z T

0

cos2.kx � !t/ dt D
1

2�

Z 2�

0

cos2 � d� D
1

2
;

and the same applies to sin2.kx � !t/.
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It can be seen that the equipartition between kinetic and potential energies is established in
terms of their average over one wave period.

Looking at (3.63), the potential energy is proportional to �2, and is positive not only at
the crest (� > 0) but also at the trough (� < 0) of the wave. It may seem a bit strange that the
potential energy is positive even at the trough where the water level has been lowered. However,
this is natural once we remember that it is water that can have the potential energy. The water
which is above the reference level, i.e., the flat surface z D 0, has positive potential energy, while
the water below z D 0 has negative potential energy. At the crest of the wave, since the water
which is above the reference level and hence has positive potential energy is newly added by the
wave, the potential energy there is naturally positive. On the other hand, at the trough of the
wave, the water which used to be there before the wave occurs has been removed. The water
below the reference level has negative potential energy. Since the water with negative potential
energy has been removed, the potential energy has also increased to become positive at the
trough, too.

3.3.2 ENERGETIC CONSIDERATION ON THE DISPERSIVITY OF
WATER WAVES

An interpretation can also be given to the dispersive character of water waves from the view-
point of energy. Here, we introduce it following the argument by Lighthill [5]. First, let’s start
with a review of the basic oscillatory motion of a system of mass m and spring constant k.11
Denoting the displacement as x.t/, the equation of motion is m Rx D �kx. The potential en-
ergy of this motion is 1

2
kx2, and its average per period is 1

2
kx2. The kinetic energy is 1

2
m Px2,

and its average per period is given by 1
2
m!2x2. The general solution of this motion is given by

x.t/ D A cos.!t C �0/; ! D
p
k=m, and it can be understood that ! is determined so that the

general property of small oscillation around an equilibrium that “the average potential energy
per period and the average kinetic energy per period is equal” holds. This also means that !2

is determined as the ratio of the “stiffness” k, which is the coefficient of 1
2
x2 in the potential

energy, and the “inertia” m, which is the coefficient of 1
2
Px2 in the kinetic energy.

Let’s apply this interpretation of !2 to the water wave. The expression (3.63) of the po-
tential energy P and the expression (3.59) of kinetic energy K for small amplitude water waves
have forms that are proportional to �2 and P�2, respectively. If � is regarded as the generalized co-
ordinate, the ratio of the respective coefficients, the “stiffness” �g and the “inertia” �=k tanh kh,
gives the correct linear dispersion relation!2 D gk tanh kh. As a result, even in the case of water
waves, the equipartition K D P is established as in the case of the simple vibration of a spring.

Thus, if we adopt the vertical displacement � as the generalized coordinate, the “stiffness”
�g does not depend on wavelength, but the “inertia” �=k tanh kh changes depending on wave-
length. This is because the degree of penetration of motion in the direction toward the bottom
changes depending on the wavelength, and also because the ratio of kinetic energy in the hori-

11For a general theory of small oscillation around an equilibrium, see, for example, Chapter 6 of Goldstein [2].
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zontal direction to that in the vertical direction changes depending on the wavelength. It can be
said that this wavelength dependence of “inertia” produces the wavelength dependence of the
frequency, that is, the dispersion of water waves.

3.3.3 ENERGY FLUX AND VELOCITY OF ENERGY PROPAGATION
Next, let us consider the energy flux and energy propagation velocity associated with the linear
sinusoidal wave (3.46). The energy flux, that is, the flow of energy Fx in the positive x direc-
tion per unit time, which crosses a vertical cross section perpendicular to the wave propagation
directions, is composed of two parts: (1) by a portion of water with energy crossing the section;
and (2) by the excess pressure generated by the wave doing work.

If the wave amplitude is denoted as a, the energy density is O.a2/ and the flow velocity
is O.a/, so the part (1) is a quantity of O.a3/. On the other hand, in the part (2), the excess
pressure by the wave is O.a/, and the displacement per unit time, that is, the flow velocity is
O.a/, so the magnitude of its contribution is of O.a2/. Therefore, in linear theory where a is
very small, the part (1) can be ignored compared to the part (2).

Linearizing the Euler equation12 which is an equation of motion for an inviscid fluid, and
write its x component we get

@u

@t
D �

1

�

@p

@x
: (3.66)

By using u D @�=@x here, we obtain

p D ��
@�

@t
D �c

@�

@x
: (3.67)

Here, for the second equal sign, we have used the fact that @
@t
D �c @

@x
holds because the sinu-

soidal wave translates at a speed c. Therefore, for a linear sinusoidal wave, the energy flux Fx is
given by

Fx D

Z 0

�h

pudz D

Z 0

�h

�c
@�

@x

@�

@x
dz D 2c

Z 0

�h

1

2
�

�
@�

@x

�2

dz D 2c Kx; (3.68)

where Kx .D
R 0

�h
1
2
�.�x/

2dz/ is the horizontal kinetic energy per unit surface area.
The propagation velocity U of energy should be defined as the ratio of the average energy

flux Fx to the average energy density E .D K C P /. So we have

U D
Fx

K C P
D
2cKx

2K
D c

Kx

K
�!

U

c
D
Kx

K
; (3.69)

that is,
Energy propagation velocity
wave velocity (phase velocity) D

average horizontal kinetic energy
average total kinetic energy : (3.70)

12For Euler equation in fluid mechanics, see Appendix D.
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If this is specifically calculated using the sinusoidal solution (3.46),

U

c
D
Kx

K
D

R 0

�h
u2 dzR 0

�h
.u2 C w2/ dz

D

Z 0

�h

cosh2Œk.z C h/� dzZ 0

�h

˚
cosh2Œk.z C h/�C sinh2Œk.z C h/�

	
dz

D

Z 0

�h

1

2
f1C coshŒ2k.z C h/�g dzZ 0

�h

coshŒ2k.z C h/� dz
D
1

2

�
1C

2kh

sinh 2kh

�
: (3.71)

Then,
U D

1

2

�
1C

2kh

sinh 2kh

�
c D

(
c; shallow water limit (kh! 0);
1
2
c; deep water limit (kh!1):

(3.72)

The last result concerning the ratio of U and c in the two limiting situations can be derived
directly from (3.69) by considering that, in the shallow water limit kh! 0, the motion of water
particle is almost horizontal, so Kx � Kz , i.e., K � Kx , and in the deep water limit kh!1,
on the other hand, the motion of water particle is circular and isotropic, so Kx D Kz , i.e., K D
2Kx .

Many readers may have already learned somewhere that “energy propagates with group
velocity vg D

d!
dk

.” However, the velocity which is appropriate to be called the “energy propa-
gation velocity” should be defined as the ratio of energy flux to energy density as above. Let’s
confirm by the following example whether the energy propagation velocity U defined in this
way and the group velocity vg defined by the k derivative of !.k/ really agree.

EXAMPLE 4: EQUALITY OF ENERGY PROPAGATION VELOCITY AND
GROUP VELOCITY
Calculate the group velocity vg D

d!
dk

and confirm that it is equal to U of (3.71).

[Solution]

!2
D gk tanh kh �! 2!

d!

dk
D g tanh khC gkh

cosh2 kh
: (3.73)

Therefore,

d!

dk
D

1

2!

!2

k
C

1

2!

gkh

cosh2 kh
D
1

2
c C

1

2
c

gk2h

!2 cosh2 kh
D
1

2

�
1C

2kh

sinh 2kh

�
c; (3.74)

and it is true that vg is equal to U . |
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But as we saw above, the derivation process of the two velocities are completely differ-

ent. The derivation of U is by integration with respect to z of the sinusoidal solution, while
the derivation of vg is by differentiation of !.k/ with respect to k. Also, as you see from the
above derivation process, the energy propagation velocity U is a quantity that can be considered
for a completely monochromatic sinusoidal wave, while the group velocity vg is given by a k-
derivative, that is, a quantity that cannot be considered without being aware of the difference
from another sinusoidal wave with a slightly different wavenumber. Considering this way, there
may be many readers who wonders why the energy propagation velocity U defined by the “ratio
of energy flux to energy density” always coincides with the group velocity vg defined by the “k-
derivative of !, where there is the necessity for the two to coincide.13 We will not pursue this
question further here. For readers who are interested, I recommend taking a look at Section 3.4
of [5]. The group velocity vg will be discussed again in Chapter 6 of this book in the context of
modulation of wavetrains.

3.4 EXTENSION OF LINEAR SOLUTION TO
NONLINEAR SOLUTION

3.4.1 CRITERIA FOR VALIDITY OF LINEAR APPROXIMATION
The system of basic equations (3.27) of surface water waves is nonlinear. Although the Laplace
equation (3.27a) for �.x; z; t/ is linear, the boundary conditions (3.27b) and (3.27c) required on
the free surface contains nonlinear terms that cannot be written with the first power of the wave
quantities � and �. In addition, the fact that the position where these boundary conditions are
imposed is the surface z D �.x; t/ deformed by the wave is another major factor that makes the
problem nonlinear.

As mentioned in the derivation of the linearized system of basic equations (3.28), for
example, �.x; z; t/ at z D �.x; t/ contained in (3.27c) is expressed by Taylor expansion around
the undisturbed flat surface z D 0 as

�.x; z D �; t/ D �.x; 0; t/C �
@�.x; 0; t/

@z
C
1

2Š
�2 @

2�.x; 0; t/

@z2
C � � � : (3.75)

From this, the surface wave problem in which the boundary conditions are imposed on the
surface deformed by the wave is a problem involving nonlinear terms of infinite order with
respect to wave quantities such as � and �.

The sinusoidal wave solution discussed so far is a solution of the linearized system (3.28)
not of the original system (3.27) itself. Therefore, the sinusoidal wave solution is only an approx-
imate solution. In order to use an approximate solution properly, it is important in general to
know the magnitude of the error that the solution contains. Let us consider the kinetic boundary
condition (3.27c) as an example. The process of linearization leaves �t and �z in the equation

13To be honest, the author of this book himself is one such person.
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but ignores the term �x�x . Also, even for the two terms left, they are replaced by the values at
z D 0 from the values evaluated at z D �, and all the second and subsequent terms of the Taylor
expansion (3.75) have been omitted. Evaluating the terms left using the linear sinusoidal wave
solution

�t .x; t/ D �z.x; z D 0; t/ D �i! a ei.kx�!t/: (3.76)

Since we consider that the wave amplitude is small, the largest nonlinear term neglected by
the linearization is the nonlinear term that is proportional to the square of the wave amplitude.
Taking �x�x as a representative of these, and similarly evaluating its magnitude by using the
linear sinusoidal wave solution, it becomes

�x.x; z D 0; t/�x.x; t/ D
�ik!a2

tanh kh
e2i.kx�!t/: (3.77)

Hence, the ratio of its magnitude to that of the linear term is given by

j�x.x; z D 0; t/�x.x; t/j

j�t .x; t/j
D

ak

tanh kh
: (3.78)

Similar results are obtained with other nonlinear terms that are proportional to the square of
the amplitude. From this, the sinusoidal wave solution obtained as a result of linearization has
validity only in the situation where

ak

tanh kh
� 1 (3.79)

is satisfied.
For deep water waves where kh� 1, tanh kh � 1 and (3.79) simply requires

ak D
2�a

�
� 1; (3.80)

implying that the amplitude is much smaller than the wavelength, or the slope of the surface
waveform is much smaller than 1.

On the other hand, for shallow water waves where kh� 1, tanh kh � kh, and the con-
dition (3.79) becomes

ak � kh� 1: (3.81)

This means that in order for the linear approximation to be allowable in shallow water waves,
first the water depth h must be very small compared to the wavelength � to be a shallow water
wave, and in addition to that, the amplitude a must be very small compared to this small water
depth h. From this, compared to the deep water wave for which the linear approximation is
allowable if the amplitude is small compared to the wavelength, the situation where the linear
approximation is valid for shallow water wave is much more limited. This suggests that nonlinear
effects are more likely to appear for waves in shallow water.
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Incidentally, the argument about the magnitude of a certain physical quantity becomes

meaningful only after the reference material for comparison is specified. Until now, we have
often used the ambiguous expression “assuming that the amplitude is small ...” in the context of
linear approximation, but the above argument teaches us its exact meaning.

By the way, the waves of the open ocean generated by the wind cannot grow so large
because they break spontaneously and lose energy if they become too large. In real ocean waves,
innumerable trains of waves with different wavelengths and directions of propagation are mixed,
so it is not possible to apply the argument based on the sinusoidal wave solution as above, but
according to the observation results, a statistically defined average amplitude corresponding to
ak seems to be less than 0:1 in most cases. In this sense, it can be said that the ocean wave field
is an object for which linear approximation is fairly effective.

3.4.2 STOKES WAVE: NONLINEAR STEADY TRAVELING WAVETRAINS
The above discussion has taught us the conditions for the linear approximation to hold, but at
the same time, it gives us some hints on how to get a more accurate solution, including nonlinear
effects, starting from a linear sinusoidal wave solution. Assuming for simplicity that the water
depth h is infinite and the effect of surface tension can be ignored, let us consider how to find
an approximate solution taking into account of nonlinearity.

As (3.77) illustrates, if the linear term is proportional to a ei.kx�!t/, then the second-order
nonlinear term has a form proportional to a2 e2i.kx�!t/. From this, we can think of a method
in which we assume an expansion form for � such as

�.x; t/ D a eiˆ
C ˛2a

2 e2iˆ
C ˛3a

3 e3iˆ
C � � � ; ˆ D k.x � ct/; (3.82)

from the beginning, and determine the coefficients ˛2, ˛3 � � � such that (3.27) is satisfied. The
suitable expansion for the velocity potential �.x; z; t/ corresponding to this form of � would be

�.x; z; t/ D �
i!0a

k
ekzeiˆ

C ˇ2a
2 e2kze2iˆ

C ˇ3a
3 e3kze3iˆ

C � � � ; (3.83)

where !0 D
p
gk. Since the propagation velocity c may also deviate from the linear value c0

due to nonlinear effects, we assume an expansion form in a also for c,

c D c0 C c1 aC c2 a
2
C � � � ; c0 D

!0

k
D

r
g

k
: (3.84)

The dependency emkz .m D 1; 2; : : :/ of � on z is a consequence of the conditions that the � with
x dependence eimkx must satisfy the Laplace equation (3.28a), and that � must not diverge as
z ! �1.
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Substituting these expansions into the system of basic equations (3.27) and solving suc-

cessively from the lower order of a, we obtain an approximate solution as follows [6]:

� D A

�
cosˆC 1

2
� cos 2ˆC 3

8
�2 cos 3ˆCO.�3/

�
;

� D A

r
g

k

h
ekz sinˆCO.�3/

i
; c D

r
g

k

�
1C

1

2
�2
CO.�3/

�
; (3.85)

where A D 2jaj. � � Ak is a dimensionless parameter that indicates the smallness of nonlinear-
ity, and � ! 0 corresponds to the linear approximation. An analysis for finding a steady traveling
periodic wave solution including nonlinear effects by assuming a series expansion form consist-
ing of harmonics of the linear sinusoidal wave solution as above was carried out for the first
time by G. G. Stokes (1847). Therefore, an approximate solution like (3.85) is called the Stokes
wave.14

The surface waveform of the Stokes wave corresponding to � D 0:3 is shown in Fig. 3.10.
In the figure, “1st,” indicates the waveform when only the fundamental wave (i.e., the linear
sinusoidal wave), while “2nd” and “3rd” show the waveform when up to the 2nd and the 3rd
harmonics are included, respectively. The Stokes wave solution (3.85) shows that the effects of
nonlinearity on surface gravity waves appear in two aspects.

1. In the case of the linear sinusoidal waves, the surface displacement � is vertically symmetric
with respect to the mean surface z D 0, but considering the nonlinear effect, the trough of
the wave becomes shallower and flatter, and the crest becomes higher and more pointed
as the figure shows, thus the waveform becomes vertically asymmetric.

2. For linear sinusoidal waves, the wave velocity is given by c0 D
p
g=k and depends only

on the wavenumber (and hence the wavelength). However, considering nonlinear effects,
a correction term that is proportional to .Ak/2 appears in the wave velocity, and as a re-
sult, the wave with the same wavelength but with a larger amplitude has a slightly faster
propagation velocity.15

The solution given by the Stokes expansion suggests that the crest becomes sharper and
sharper as the amplitude increases, and the crest may become angular in the limiting condition.
Stokes showed that if the crest has an angle in such a limiting condition, the angle must be 120ı

in order to satisfy the boundary conditions at the free surface ((3.27b) with � D 0 and (3.27c))
theoretically using the complex function theory. (See for example Section 13.13 of [7].)

At present, the concrete waveform of this limiting Stokes wave with an angle of 120ı, that
is, the steady traveling periodic wave with the maximum amplitude, is obtained very accurately

14It is that Stokes that leaves his name in the “Navier–Stokes equation” of fluidmechanics, and also in the “Stokes theorem”
of vector analysis.

15As will be dealt with in detail in Chapter 6, this amplitude dependence of the wave velocity causes the phenomenon
of “modulational instability” of the wavetrain, which also leads to interesting (and sometimes dangerous) phenomena such as
the generation of giant waves in the ocean.
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Figure 3.10: The surface profile of the Stokes wave (k D 1:0, A D 0:3).

by numerical calculations, and it is known that its amplitude is Ak D 0:4434 for infinite water
depth, so that the ratio of wave height to wavelength is about 1/7.

For more detailed information on the overall contents of this chapter, refer to, for example,
[1, 3, 5, 7] and Chapter 7 of [4].

COFFEE BREAK: LIGHT AND SOUND ARE
NON-DISPERSIVE
When there is no dispersion, that is, the dispersion relation is! D c0k (c0 is a constant), waves of
all wavelengths and frequencies travel at the same speed c0. Therefore, given an initial waveform,
the various wavelength components that compose it are all transmitted at the same speed, so the
initial waveform is transmitted at a wave velocity c0 without distortion. Light and sound are
examples of such non-dispersive waves.

When asked “What is the speed of light?” many people will immediately answer “300,000
km/s” or “7 and a half laps of the earth in one second.” At this time, the condition of “what
color of light � � � ” is not attached. “Light” is a term that refers to the electromagnetic waves
visible to humans, and its wavelength is approximately (4 � 8)�10�7 m. Of these, the short
end of the wavelength is purple and the long end is red, and ultraviolet shorter than violet
and infrared longer than red are invisible to humans. Some members of electromagnetic waves
have much longer and shorter wavelengths than visible light. For example, the wavelength of
an electromagnetic wave called “microwave” used for heating things in a microwave oven is
about 12 cm, the wavelength of the electromagnetic waves transmitted from radio broadcasting
stations for AM (Amplitude Modulation) in Japan are several hundred meters, which is far
longer than visible light. On the other hand, X-rays used in hospital radiography is also a kind
of electromagnetic waves, but their wavelength is less than 10�9 m D 1 nm, less than 1/100
of visible light, and compared to the radio waves of AM radio, it is less than 1/100 billion.
Nevertheless, electromagnetic waves are non-dispersive waves, and therefore, regardless of the
wavelength, whether they are X-rays or radio waves from broadcasting stations, the propagation
velocity is the same at about 300,000 km/s.16

16However, the fact that electromagnetic waves, including visible light, are non-dispersive is limited to being in vacuum.
In materials, they become dispersive and differences in propagation speed appear depending on the wavelength. The fact that
the light can be divided into the seven colors of the rainbow by a glass prism is exactly that manifestation. The speed of light
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Sound wave is also one of the most familiar wave phenomena to us. As in the case of the

speed of light, if you are asked about the speed of sound, many of you will reply, “about 340
m/s.” If you remember a little more well, you may answer “331 + 0.6� temperature (ıC).” Even
at this time, nobody would ask back, “What is the frequency of the sound?” This is also because
sound waves are non-dispersive waves.

The audible range of frequency that can be heard by the human ear is said to be approxi-
mately 20–20,000 Hz. Within this range alone, there is a difference of 1000 times. In addition
to the audible range, there are ultrasonic waves that humans cannot hear but bats can, and very
low frequency sounds that are not directly audible to humans but known to have some bad effect
on human’s health. If you include these, sound waves have a fairly wide range of wavelengths.
However, all these frequency components propagate at the same speed, so the initial waveform
does not change with propagation. The reason why we can use “voice,” that is, sound wave as a
tool of daily communication is that sound wave is non-dispersive. If the sound wave were dis-
persive, what would happen? When you say to your friend “I love you,” the various frequency
components included in the pressure fluctuation generated by your voice would be transmitted
at different speeds, the waveform would change as it propagates, and it would become just a
noise without meaning when your voice arrives at the ear of your friend. Suppose that the sound
wave has the same dispersive character as the water wave, that is, the lower the frequency, the
faster it travels. Then, even if all the instruments of the orchestra are playing at the same time in
a concert hall, the sound of the low sound of contrabass would reach first to the audience and
the high sound of piccolo would arrive later. Then a great performance would turn into nothing
but a mess.

In order for waves to be non-dispersive, the only permitted form of the dispersion relation
is !.k/ D c0 k. In this sense, non-dispersive waves are quite special waves. Bearing this in mind,
we should be more grateful to the “accidental fortune” that the sound wave, i.e., the wave of
density and pressure which is completely governed by the laws of physics, is not dispersive.
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C H A P T E R 4

Perturbation Method and
Multiple Scale Analysis

Perturbation method is a method for finding approximate solutions in the form
of a power series in � when a small parameter � is included in the equation to be
solved. The basic system of equations for water surface waves (3.27) does not include
a small parameter explicitly. But, for example, in the situation of long wave in which
the wavelength � is much longer than the water depth h (i.e., h=�� 1) or in the
situation of quasi-monochromatic wavetrain to be dealt with in Chapter 6 in which
the width of the spectrum �k is much smaller than the carrier wavenumber kc (i.e.,
�k=kc � 1), small parameters appear when the equations are non-dimensionalized
in an appropriate manner. By using the perturbation method that makes use of the
smallness of the parameter, it is possible to obtain an approximate solution or to
reduce the equation itself to a simpler one.Thus, the perturbationmethodwill play an
important role in many parts of this book in the future, so the basic knowledge about
it will be summarized in this chapter. We also introduce the “multiple scale method,”
which is an evolved perturbationmethod that remains effective in the situation where
simple perturbation methods fail.

4.1 NECESSITY OF APPROXIMATE SOLUTION
METHOD

Consider again a simple pendulum, as shown in Fig. 3.9. Newton’s law of motion for tangential
direction can be written as

ml
d2�

dt2
D �mg sin �: (4.1)

This equation is a nonlinear ordinary differential equation and is difficult to solve.1 What makes
this equation nonlinear is sin � on the right-hand side. sin � contains a power of infinite order
of � , as shown by its Taylor expansion

sin � D � � �
3

3Š
C
�5

5Š
� � � � ; (4.2)

1In the case of this equation, it can be solved analytically if you have knowledge about the “elliptic functions.” In that
case, the exact solution is given by �.t/ D 2 sin�1 Œk sn.!0t; k/� ; k D sin.�max=2/; where sn.x; k/ is one of Jacobi’s elliptic
functions.



66 4. PERTURBATION METHOD AND MULTIPLE SCALE ANALYSIS
and is not a linear function.

However, if the swing angle is small enough to approximate sin � by � , the equation to be
solved is a linear differential equation

ml
d2�

dt2
D �mg � �!

d2�

dt2
D �!2

0 �; !0 �
p
g=l; (4.3)

and the general solution can be easily obtained as �.t/ D A cos.!0t C �/: Here, A and � are
arbitrary constants, A is the amplitude, and � is the initial phase. The solution shows that the
frequency !0 of the pendulum with a small swing angle is determined by the ratio of the length
l to the gravitational acceleration g by !0 D

p
g=l , and it does not depend on the mass m

or the amplitude A. This property is known as “isochronism” of a pendulum. Thus, assuming
that the amplitude is small and approximating it with a linear equation, the solution becomes
much easier. However, it is known that in a pendulum governed by the original equation (4.1),
isochronism does not hold, and the period becomes longer as the amplitude becomes larger.
That is, the important property that the period depends on the amplitude has been lost by the
linearization.

Not only for the pendulum, but also for various phenomena around us, the rules governing
them are often expressed in the form of nonlinear differential equations. However, most of
these nonlinear differential equations cannot be solved analytically. The pendulum, which can be
solved by using the sophisticated elliptic functions, is rather exceptional. If there is no means to
obtain exact solutions in most cases, it is important to find approximate solutions that reproduce,
albeit incomplete, the important parts of the properties possessed by the true solutions. One of
the representativemethods for obtaining such approximate solutions is the perturbationmethod.

4.2 PERTURBATION METHOD
Perturbation method is a method for finding approximate solutions in the form of a series ex-
pansion in � when a small parameter � is included in the equation to be solved.2

4.2.1 APPROXIMATE VALUE OF ROOT OF QUADRATIC EQUATION
Let’s try one exercise first. For a quadratic equation

x2
C �x � 1 D 0; (4.4)

2“Perturbation” is a term derived from astronomy. For example, when considering the movement of the earth around the
sun, Newton’s equation of motion considering only the attraction between the sun and the earth can be solved exactly (two-
body problem), and the earth draws an elliptical orbit with the sun as one focus. However, in reality, although it is weaker than
the gravitational force from the sun, there is also an attraction from other planets such as Mars and Jupiter, which disturbs
the elliptical orbit of the earth. The disturbance of the orbit due to the minute influence from celestial bodies other than the
two objects in question has long been called as “perturbation” in astronomy.
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consider � � 1 and find an approximation of the root. Of course, if we use the formula for the
roots of the quadratic equation, exact roots can be easily obtained as

x D
�� ˙

p
�2 C 4

2
; (4.5)

but in order to show the procedure of the perturbation method, we try to find an approximate
value of the roots by perturbation method.

First, consider approximating the root x with a series in the small parameter � as

x.�/ D x0 C �x1 C �
2x2 C � � � : (4.6)

Since x D x0 when � D 0, x0 must be the root for � D 0, that is,

x2
0 � 1 D 0; (4.7)

so x0 D ˙1. Let us choose x0 D 1 of these and find out how this is modified when � ¤ 0.
Assuming

x.�/ D 1C �x1 C �
2x2 C � � � ; (4.8)

and inserting to (4.4) gives

.1C �x1 C �
2x2 C � � � /

2
C �.1C �x1 C �

2x2 C � � � / � 1 D 0: (4.9)

Arranging this equation according to the power of � gives

.1 � 1/C .2x1 C 1/� C .2x2 C x
2
1 C x1/�

2
CO.�3/ D 0: (4.10)

Since � is a parameter that can take any value as long as it is small, the coefficients of each
order in � on the left side must be all 0 in order for this equation to hold. Then, x1 D �

1
2

from
the coefficient of �1, substituting this into the coefficient of �2 and requiring it to vanish, we
obtain x2 D

1
8
. Substituting these values of x1 and x2 into the coefficient of �3, then we obtain

x3 D � � � . In this way, the coefficients of the expansion (4.8) are determined successively from
the lower order by a simple calculation. As a result, we obtain

x D 1 �
1

2
� C

1

8
�2
CO.�3/; (4.11)

as an approximation to the root close to 1 among two roots of (4.4).
When � D 0:1, for example, the exact value given by the quadratic formula is

0:9512492 � � � , while the approximate solution (4.11) gives 0.95125, with an error of less than a
millionth. Even when � D 1:0, which seems ridiculously large though, the approximate solution
(4.11) gives 0.625 for the exact root 0:6180339 � � � , and the relative error is only about 1%. When
using the perturbation method, we formally require � � 1, but, as this example shows, there are
many cases where the obtained results remain unexpectedly accurate for surprisingly large �.
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4.2.2 APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATION
We can also solve differential equations approximately using perturbation methods. For an ex-
ercise, let us find the approximate solution of the initial value problem of a nonlinear ordinary
differential equation

Px C x C �x2
D 0; x.0/ D 1 (4.12)

by the perturbation method.
As in the above example, we start with a series for x

x.t/ D x0.t/C �x1.t/C �
2x2.t/C � � � : (4.13)

What differs from the above example is that the expansion coefficient xi is not a constant but a
function of t . From the initial condition

x.0/ D x0.0/C �x1.0/C �
2x2.0/C � � � D 1; (4.14)

we obtain the initial conditions for each xi .t/,

x0.0/ D 1; x1.0/ D 0; x2.0/ D 0; � � � : (4.15)

Substituting (4.13) into (4.12) gives

. Px0 C � Px1 C �
2
Px2 C � � � /C .x0 C �x1 C �

2x2 C � � � /C �.x0 C �x1 C �
2x2 C � � � /

2
D 0:

(4.16)
If we arrange this by powers of � and solve it from the lower order,

O.�0/: Px0 C x0 D 0; x0.0/ D 1 �! x0.t/ D e�t ; (4.17a)

O.�1/: Px1 C x1 D �x
2
0 D �e�2t ; x1.0/ D 0 �! x1.t/ D �e�t

C e�2t ; (4.17b)

O.�2/: Px2 C x2 D �2x0x1 D 2e�2t
� 2e�3t ; x2.0/ D 0;

�! x2.t/ D e�t
� 2e�2t

C e�3t ; (4.17c)

and we get

x.t/ D e�t
C �

�
�e�t

C e�2t
�
C �2

�
e�t
� 2e�2t

C e�3t
�
CO.�3/ (4.18)

as an approximate solution up to O.�2/.
In fact, (4.12) is a nonlinear differential equation called “Bernoulli type,” which can be

reduced to a linear differential equation by a simple variable transformation. Moreover, since it
is also a separable differential equation, it is possible to solve it by thinking so. The exact solution
is given by

x.t/ D
1

.1C �/et � �
: (4.19)
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Although the error included in the approximate solution (4.18) gradually increases with time t ,
it can be confirmed that, for example, when � D 0:1, the relative error remains less than 0.1% at
t D 10. Also, if we consider the exact solution (4.19) as a function of � and find the Maclaurin
expansion (i.e., Taylor expansion around � D 0) in �, it agrees with the approximate solution
(4.18) obtained by the perturbation method.

4.3 APPLICATION TO NONLINEAR PENDULUM
4.3.1 BREAKDOWN OF REGULAR PERTURBATION METHOD
From the above examples, it was found that even for nonlinear problems that cannot be solved
exactly, it may be possible to obtain effective approximate solutions with relatively simple calcu-
lations by using the perturbation method. But, unfortunately, it does not always work this way.
In fact, as we will see below, even with the simple problem of a single pendulum mentioned at
the beginning of this chapter, the usual perturbation method cannot obtain an effective approx-
imate solution.

Since a small parameter does not appear explicitly in the pendulum equation (4.1), it is
first necessary to rewrite the equation so that the perturbation method can be used, that is, a
small parameter appears explicitly. Let the maximum swing angle of the pendulum be �max and
introduce a dimensionless variable x by x D �=�max. Also, let us introduce a dimensionless time
variable Qt by Qt D !0 t , and express the derivative of x with respect to Qt as Px. Substituting the
Maclaurin series (4.2) of sin � to (4.1) and introducing � by � D �2

max=6, (4.1) becomes

Rx C x � �x3
C

3

10
�2x5

� � � � D 0; x.0/ D 1; Px.0/ D 0: (4.20)

Here, in order to be specific, it is assumed that the pendulum is pulled up to �max at t D 0 and
released with speed 0. In the linear approximation that predicts the pendulum isochronism, all
terms that contain � on the left side are ignored. However, in order to obtain an approximate
solution including nonlinear effects, we treat � as a small but nonzero parameter, and try to find
an approximate solution by the perturbation method.

First of all, assume as usual

x.t/ D x0.t/C �x1.t/C �
2x2.t/C � � � : (4.21)

Since there is no fear of confusion, we will omit the tilde from Qt and simply write t . From the
initial condition,

x.0/ D x0.0/C �x1.0/C � � � D 1; Px.0/ D Px0.0/C � Px1.0/C � � � D 0: (4.22)

This gives the initial condition for each xi .t/ as follows:

x0.0/ D 1; xi .0/ D 0 .i D 1; 2; � � � /; Pxi .0/ D 0 .i D 0; 1; 2; � � � /: (4.23)
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Substituting (4.21) into (4.20),�

Rx0 C � Rx1 C �
2
Rx2 C � � �

�
C
�
x0 C �x1 C �

2x2 C � � �
�

� �
�
x0 C �x1 C �

2x2 C � � �
�3
C

3

10
�2
�
x0 C �x1 C �

2x2 C � � �
�5
� � � � D 0: (4.24)

Arranging this according to the power of � and solving successively from the lower order, we
obtain

O.�0/: Rx0 C x0 D 0; x0.0/ D 1; Px0.0/ D 0 �! x0.t/ D cos t; (4.25a)

O.�1/: Rx1 C x1 D x
3
0 D cos3 t D

1

4
cos 3t C 3

4
cos t; x1.0/ D 0; Px1.0/ D 0

�! x1.t/ D
1

32
cos t � 1

32
cos 3t C 3

8
t sin t: (4.25b)

Therefore, we obtain

Qx.t/ D cos t C �
�
1

32
cos t � 1

32
cos 3t C 3

8
t sin t

�
CO.�2/ (4.26)

as an approximate solution Qx.t/ considering up to �x1.t/. However, the term 3
8
t sin t that appears

in O.�/ causes a trouble here.
When we assume that the solution is represented by an infinite series like (4.21), it is

implicitly assumed that we are to obtain only the first few terms and then truncate the series, and
we have no idea of obtaining until the end of the infinite series. In order to obtain a reasonable
approximate solution no matter where we truncate the series, the relation �nxn � �nC1xnC1

must hold for any n, that is, the first term ignored must be much smaller than the last term
left.3 The series (4.21) satisfies this property under the condition of � � 1 if the magnitude of
each coefficient xn.t/ remains of O.1/. Looking at the approximate solution (4.26), the part
x0.t/ D cos t always remains O.1/. In the part multiplied by �, the first and the second term
always remain O.�/ and do not cause any problem, but the third term � 3

8
t sin t grows infinitely

with time, no matter how small � is. A term that grows infinitely with time in this way is called
a secular term.

When time t becomes about 1=�, the first term x0 and the second term �x1.t/ of the
series (4.21) become similar in magnitude, and the rationality of the approximation is lost. For
example, let � D 0:01. This corresponds to �max � 0:25 (rad) about 14ı) in amplitude. The as-
sumption that � � 1 seems to be not so bad for this value of �, but even in this case, if t is about
1=� D 100, the approximate solution (4.26) becomes completely useless. According to the linear
theory, the period of this pendulum is 2� , so t D 100 is only 16 times of swing of the pendu-
lum. Figure 4.1 shows a comparison of the approximate solution (4.26) and the exact solution
when �max D 45

ı (� � 0:1). It can be observed that the exact solution (solid line) oscillates at a
constant amplitude, while the approximate solution (4.26) obtained by the perturbation method
(dashed line) becomes larger and larger with time due to the secular term.

3A series with this property is called an asymptotic series.
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Figure 4.1: Behavior of the approximate solution (4.26). Dotted line: the approximate solution
(4.26); solid line: exact solution. (�max D 45

ı, � � 0:103.)

4.3.2 FORCED OSCILLATION AND RESONANCE
Why does the perturbation method, which worked so well for the approximation of roots of
quadratic equation and the calculation of approximate solution of the first-order differential
equation, not work well for the nonlinear pendulum problem? The direct cause is that, as we saw
above, the solution of O.�/ has an infinitely growing secular term. But in the background of the
appearance of this secular term is a phenomenon called resonance.

Let us consider the equation of forced oscillation of a linear oscillator driven by a sinusoidal
external force,

Rx C !2
0x D F cos!t; (4.27)

where !0 is the natural frequency of the oscillator, and !, F are the frequency and the amplitude
of the external force, respectively. If ! ¤ !0, i.e., if the frequency of the external force is different
from the natural frequency, the general solution to this equation is given by

x.t/ D A cos.!0t C �/C
F

!2
0 � !

2
cos!t; (4.28)

where A, � are certain constants determined from the initial conditions. (4.28) shows that the
oscillation realized in this situation is a superposition of harmonic oscillation with the natural
frequency !0 of the oscillator itself and the harmonic oscillation with the frequency ! of the
external force. It also shows that the amplitude of the part oscillating with the external frequency
is proportional to the strength F of the external force and increases as !2 and !2

0 become closer.
The amplitudes of the two harmonic oscillations that make up the solution are constant, and
x.t/ remains finite forever.

On the other hand, in the case of ! D !0, (4.27) becomes

Rx C !2
0x D F cos!0t; (4.29)
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and this equation has a particular solution xp.t/,

xp.t/ D
F

2!0

t sin!0t: (4.30)

Note that the amplitude is not constant but proportional to t . Thus, the general solution in this
case is given as the sum of the general solution of the corresponding homogeneous equation
(i.e., no external forcing) and xp.t/ as follows:

x.t/ D A cos.!0t C �/C
F

2!0

t sin!0t: (4.31)

Thus, when an oscillator is driven by an oscillatory external force with the same frequency as its
natural frequency, the oscillation amplitude increases without limit. This phenomenon is called
resonance.

In June 2000, there was an event that theMillenniumBridge in Londonwas shut down on
the second day of its operation. The Millennium Bridge, as the name suggests, was a wonderful
pedestrian-only bridge built with a huge expense of over 18 million pounds to commemorate the
arrival of the 21st century, but when a large number of pedestrians walked it caused a big shake,
and it was temporarily closed for repair. This repair work costed extra 5 million pounds and the
bridge was opened again in February 2002. Since humans walk on two legs, the center of gravity
of the body swings slightly to the left and right when taking a step forward. At this time, humans
exert lateral force on the bridge. The force that one person exerts on a huge bridge is negligible.
However, if the bridge starts to shake a little for some reason (crosswind, for example), many
people on it (some 2,000 people at one time) will tend to keep pace with the shake and take
a step because it is easier to walk if it is adjusted to the bridge’s shaking. When this happens,
the frequency of the bridge’s roll and the lateral force applied to the bridge by many people
will match, a resonance phenomenon will occur, and the shake will get bigger and bigger. It
is now thought that this resonance phenomenon is the cause of the vibration problem of the
Millennium Bridge.

In the process of applying the perturbation method to the nonlinear pendulum problem to
obtain an approximate solution, this resonance actually occurred. That is, if we look at (4.25) for
x1.t/, it can be seen that the oscillator with natural frequency !0 D 1 is forced by the oscillatory
external force with the same frequency. Because of this, a resonance occurs and a secular term
t sin t appears, and the approximate solution breaks down.

4.4 MULTIPLE SCALE ANALYSIS
4.4.1 MULTIPLE TIME SCALE
So, is the perturbation method totally useless even with this simple problem of nonlinear pendu-
lum? Isn’t there any good idea to make the perturbation method useful again? Thanks to the ef-
forts of previous researchers, a group of “evolved” perturbation methods has been developed that
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do not lose their effectiveness even when the regular perturbation method breaks down. They
are called the singular perturbation methods. Here, we take up the multiple scale method,
which is one of the most easily accessible and versatile among them, and introduce its concept
and effectiveness by applying it to the problem of nonlinear pendulum.

Let us consider again the nonlinear pendulum equation (4.20).The first two terms without
� are far larger, and the basic part of the motion is determined by them. This is the harmonic
oscillation of !0 D 1 given by the linear theory. Comparing with them, the terms with � after the
third term are much smaller. In order to describe the effects of these minor factors (for example,
deviation from isochronism), it will be necessary to observe the motion for a fairly long time.

That is, there exits two important time scales in the motion of the nonlinear pendulum.
One is the usual time which treats each swing of the pendulum. The t used in the equation (4.20)
is a time variable that is well suited to observing this each swing of the pendulum. The other is a
long time when nonlinear effects become visible. Since the magnitude of the terms that produce
nonlinear effects is O.�/, it may take as long as 1=� for them to accumulate and become visible.
This also agrees with the fact that the time t at which the approximate solution obtained by the
regular perturbation method breaks down due to the growth of the secular term is about 1=�.

For example, when talking about 100 m runs of athletics, we use seconds as units, but
when talking about global climate change, we use units of 100 years or 1000 years, even though
there is one and the same flow of time. Similarly, it is not surprising that the idea of introducing
two time variables at the same time has arisen if the phenomenon to be treated contains two
very different important times. This is the idea called the multiple time scale.

In the multiple time scale method, a new time variable � is introduced by � D �t , in
addition to the time variable t initially present. Since this new time variable � only changes
by about 1 after a long time of about 1=� when viewed with the original time variable t , it
is a suitable time variable to see a long time when nonlinear effects appear. And we treat the
dependent variable x.t/, which is originally a function of only t , as a function of two independent
time variables like x.t; �/. Of course, because � D �t , t and � are not independent, and treating
x like this as a two-variable function is just a kind of trick. However, as we will see below, this
little trick can avoid the troubles faced by the regular perturbation methods. That is, by taking
advantage of the new “degree of freedom” created by considering x, which is a function of only
t , as if it were a function of t and � , it is possible to avoid the occurrence of the secular term
that makes the regular perturbation method break down. In the following, we will show the
procedure of multiple scale method specifically for (4.20).

4.4.2 APPLICATION OF MULTIPLE TIME SCALE TO NONLINEAR
PENDULUM

Let us introduce a new time variable � by � D �t . At the same time, to distinguish t in multiple
time scale analysis from the original single time t , we write t as t0.Then x.t/ is treated as x.t0; �/.
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Then, the original time derivative changes to

dx

dt
D
@x

@t0

dt0

dt
C
@x

@�

d�

dt
D
@x

@t0
C �

@x

@�
(4.32)

according to the chain rule of partial derivatives. That is, if only the part of the differential
operation is extracted, the following replacement occurs:

d

dt
D

@

@t0
C �

@

@�
: (4.33)

Substituting this into (4.20) and representing x as a series expansion

x.t/ D x.t0; �/ D x0.t0; �/C �x1.t0; �/C � � � ; (4.34)

as usual gives�
@

@t0
C �

@

@�

�2

.x0 C �x1 C � � � /C .x0 C �x1 C � � � / � � .x0 C �x1 C � � � /
3
C � � � D 0: (4.35)

We arrange this according to the power of � and solve it from the lower order. At first forO.�0/,

@2x0

@t20
C x0 D 0 �! x0.t0; �/ D A.�/ cos Œt0 C �.�/� : (4.36)

If we were using the conventional regular perturbation method, the amplitude A and the phase
constant � were constants determined from the initial conditions. However, in the multiple time
scale method, they are constant with respect to the fast time t0, but are permitted to be functions
of the slow time � .

At the next order O.�1/, we obtain

@2x1

@t20
C x1 D x

3
0 � 2

@2x0

@t0@�
: (4.37)

Substituting the solution of O.�0/ into x0 gives

@2x1

@t20
C x1 D A

3 cos3.t0 C �/C 2
@

@�
ŒA sin.t0 C �/�

D
1

4
A3 cosŒ3.t0 C �/�C

3

4
A3 cos.t0 C �/C 2

@A

@�
sin.t0 C �/

C 2A cos.t0 C �/
@�

@�
: (4.38)

Comparing with the corresponding equation (4.25b) in the regular perturbation method, it can
be seen that two terms including � derivative are newly added to the right-hand side, as a result
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of A and � being allowed to depend on the slow time � . Of the right side of (4.38), the reso-
nant “external force” that cause the generation of secular terms are the terms of sin.t0 C �/ and
cos.t0 C �/. Therefore, the following conditions are obtained as conditions with which these
terms disappear and no secular term occurs:

sin.t0 C �/:
@A

@�
D 0 �! A.�/ D A0 .A0 D const./; (4.39)

cos.t0 C �/:
@�

@�
C
3

8
A2
D 0 �! �.�/ D �

3

8
A2

0� C �0 .�0 D const./: (4.40)

Such a condition as above for preventing the occurrence of a secular term is called a non-secular
condition. If the amplitude A and the phase constant � change slowly to satisfy this condition,
no secular term occurs, x1 remainsO.1/, and therefore the series approximation (4.34) does not
break down. Then, from (4.36), the most dominant part of the solution x0 is given by

x0 D A.�/ cos Œt0 C �.�/� D A0 cos
�
t0 �

3

8
A2

0 � C �0

�
D A0 cos

��
1 �

3

8
�A2

0

�
t C �0

�
:

(4.41)
In (4.41), if we change the time variable back to the original variable,4 substitute the definition
of �, i.e., � D �2

max=6, and consider that x D 0 at t D 0, then we get

�.t/ D �max cos
�
!0

�
1 �

1

16
�2

max

�
t

�
CO.�/: (4.42)

This approximate solution shows that the frequency ! and the period T of the pendulum are
given by

! � !0

�
1 �

1

16
�2

max

�
; T D

2�

!
� T0

�
1 �

1

16
�2

max

��1

; (4.43)

implying that the frequency decreases and the period gets longer with the increase of the am-
plitude �max.

Figure 4.2 depicts the ratio of the period T to the linear period T0 .D 2�=!0/ as a
function of the amplitude �max. The solid line shows the result based on the exact solution,
and the dotted line shows the result (4.43) obtained by the multiple time scale method, i,e„
T=T0 D 1=

�
1 � �2

max=16
�
. It can be seen that, even though it is an approximation that incor-

porates only minimal nonlinear effects, as �max increases to as much as 150ı it still gives quite a
good prediction.

Figure 4.3 shows the comparison between the linear solution (dotted line) without con-
sidering nonlinear effects and the exact solution (solid line) when �max D 45

ı, the same case as
that shown in Fig. 4.1. Since the linear solution cannot take into account the elongation of the
period resulting from the nonlinear effect, the phase difference with the exact solution increases

4When (4.20) is derived, Qt is introduced by Qt D !0t . Since we have omitted the tilde since then, t here is correctly
Qt D !0t .
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Figure 4.2: Period T of a single pendulum vs. amplitude �max. Solid line: exact result; dotted
line: approximate result (4.43).
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Figure 4.3: Exact solution (solid line) vs. linear solution (dashed line). (�max D 45
ı.)

with time, and in just 10 oscillations or so, the phase difference grows so large that the linear
solution predicts the pendulum to swing to the left although the exact solution predicts it swing
to the right. On the other hand, Fig. 4.4 shows the comparison between the approximate solu-
tion (4.42) obtained by the multiple time scale method and the exact solution for the same case.
Despite the relatively large amplitude of �max D 45

ı, the approximate solution agrees with the
exact solution so well that the difference can hardly be seen, at least as far as the time of about
16 oscillations shown in the figure.

Although it is a tricky idea of “introducing multiple time variables and treating them as
if they were independent variables,” this example clearly shows that this methodology is very
simple and powerful. The multiple scale method is often used in this book from now on. For
more details and applications of the perturbation methods in general, refer to [1, 2] and [3], for
example.
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COFFEE BREAK: MULTIPLE SCALE METHOD
There is a science fiction story that I always remember whenever I think about the multiple time
scale method. It was a very short science fiction (SF) story that was published in a newspaper
for junior high-school students in Japan more than 50 years ago. Since it was a long time ago, I
do not remember even the title of the story, but I remember that the outline of the story was as
follows.

An archaeologist found the ruins of an ancient civilization in a desert. There stood a huge
stone statue of guardian guarding the holy temple. The archaeologist broke a part of the toe of
the statue with a hammer, and brought home a piece of stone for further examination. Unfortu-
nately, a war broke out shortly after this event and the investigation was interrupted. When the
archaeologist visited the site again several years after the war ended, he saw that the upper body
of the stone statue, which used to be upright, was slightly bowed forward as if the guardian was
trying to reach toward the fingertip of the foot that the archaeologist had broken with a ham-
mer several years ago. The story ends with just this. However, the story seems to be based on the
concept that various phenomena of this world are progressing in parallel at completely different
time scales from each other, which is exactly the same as the basic concept of the multiple scale
method, and I believe that this story is one of the masterpieces of short SF.

There is a story similar to this, not in the SF world, but a real fluid mechanical phe-
nomenon called pitch-drop experiment. The pitch is a black material that remains after distil-
lation of petroleum and other materials from crude oil. It is liquid at high temperature but it is
solid at normal temperature. It suffices if you can imagine the asphalt used for road pavement.
In 1927, Prof. Parnell of the University of Queensland in Australia poured pitch that had been
heated to a high temperature into a funnel that was closed at the outlet, and left it at room tem-
perature for about 3 years. Of course, at this point, the pitch was completely solidified, and if
it was hit with a hammer, it would be shattered. Prof. Parnell then cut the mouth of the funnel
that had been closed and set the funnel upright so that the pitch could flow out. Then eight
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Figure 4.5: The pitch-drop experiment.

years later, in 1938, one drop of pitch dropped from the mouth of the funnel. This experiment
is still ongoing 90 years after the start of the experiment, and 8 pitch drops have dropped so
far. A mass of pitch, that appears to be completely solid and stationary on the time scale of our
daily life, also flows exactly like a liquid on a scale longer than a few decades. Incidentally, this
experiment is registered in the Guinness Book of Records as the longest continuous experiment
in the world.
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C H A P T E R 5

KdV Equation: Effect of
Dispersion

In Chapter 1, we studied that in the nonlinear wave equation ut C c.u/ux D 0,
the propagation velocity c.u/ depends on the dependent variable u, so the wave-
form steepens with propagation and the solution breaks down in finite time. In the
case of surface waves, this occurs when introducing nonlinear effects to waves whose
wavelength is very long compared to the water depth. (See Appendices B and F for
details.) On the other hand, we also studied in Chapter 3 that the surface wave is
a dispersive wave, except for the long wave limit, and that the propagation velocity
is different depending on the wavelength. In this chapter, we investigate the nature
of the waves when both the effects of nonlinearity and dispersion are considered
simultaneously. We will learn that a solitary wave that propagates extremely stably
becomes possible as a result of the competition between these two effects.

5.1 KDV EQUATION AND ITS INTUITIVE DERIVATION
When a wave propagates in the positive x direction and enters into a quiescent water area with
depth h which is very shallow compared to the wavelength of the wave, the surface displacement
�.x; t/ is governed by the nonlinear wave equation1

@�

@t
C

�
3
p
g.hC �/ � 2

p
gh
� @�
@x
D 0: (5.1)

As the propagation speed is an increasing function of �, the larger the � (higher water surface),
the faster it travels. For this reason, as we saw inChapter 1, the portion of �x < 0 of the waveform
leans forward more and more over time, and finally the surface displacement (hence also the flow
velocity u) becomes a multi-valued function of x, which is physically unacceptable. (5.1) is an
approximate equation derived under the assumption of “long wave,” that is, the typical length
of the spatial change of �.x; t/ is much longer than the water depth h. However, when the
waveform leans forward and steepens due to nonlinear effects, the assumption of long wave is
violated there. In this sense, (5.1) is an equation which involves a self-contradiction that the
foundation of its own establishment is broken due to the nonlinearity that it has.

1The derivation of this equation is given in Appendix B.
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On the other hand, as shown in Chapter 3, the gravity wave on water surface is a dispersive

wave whose wave speed differs depending on the wavelength, and its linear dispersion relation
is given by

! D
p
gk tanh kh: (5.2)

For “perfectly long wave” (i.e., shallow water limit kh! 0) whose wavelength � D 2�=k is
very long compared to the water depth h, since tanh kh=kh! 1, ! !

p
gh k (wave velocity

c D !=k !
p
gh D constant), and the dispersion disappears. Therefore, the dispersive nature

of water wave is not reflected at all in (5.1) which has been derived assuming a perfectly long
wave. However, with the steepening of the waveform brought about by the nonlinear effect, the
state of “perfectly long wave” cannot persist forever, and a situation arises in which the dispersive
character of the wave must necessarily be taken into consideration.

It is of course possible to systematically derive a new equation that takes into account the
effect of dispersion starting from the system (3.27) of basic equations of water waves. However,
this method is rather cumbersome to carry out, so let’s turn it into Appendix F, and here we
will consider incorporating the effect of dispersion in (5.1) in a more intuitive way as follows.
Taylor expansion of the linear dispersion relation (5.2) of gravity wave around the long wave
limit kh D 0 gives

! D
p
gh k �

1

6

p
ghh2k3

CO(kh)5
: (5.3)

Here the part after the second term on the right side brings about the dispersion. As long as
we are considering the modification of (5.1), the waves we are targeting here are long waves to
some extent, and in that sense kh is a small quantity. Then, each term after the second term on
the right side of (5.3) becomes smaller toward the back, so it should be possible to capture the
most important part of the dispersion effect for long waves only by considering the second term.
Recalling the correspondence

@

@t
�! �i!;

@

@x
�! ik (5.4)

that holds for the linear sinusoidal wave a ei.kx�!t/ as we saw in Section 3.1, we can see that it
is sufficient to add a term .

p
gh h2=6/�xxx in order to incorporate the effect of the second term

of the dispersion relation (5.3) into (5.1). Thus, for long waves propagating in the x direction,
the equation
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can be obtained as an equation that incorporates the effects of nonlinearity and dispersion si-
multaneously.

However, there is one point to be considered here. For the derivation of (5.1), it is as-
sumed that the wave is a perfectly long wave hence kh is very small, but it is not assumed that
nonlinearity �=h is small. However, since we incorporated the effect of dispersion into (5.1)



5.1. KDV EQUATION AND ITS INTUITIVE DERIVATION 81

in the form of the additional term .
p
ghh2=6/�xxx based on the linear dispersion relation, the

equation has rationality only for waves close to linear. Therefore, considering that
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under the approximation �=h� 1, it is reasonable to replace the nonlinear term in (5.5) withp
gh.1C 3�=2h/ at the same time. Thus, the equation
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is finally obtained as an equation which governs the weak nonlinear long waves propagating in
the positive x direction. Equation (5.7) was first derived by Korteweg and de Vries in 1895 [12],
and is called the Korteweg-de Vries equation or KdV equation for short.

The original analysis of Korteweg and de Vries also considered the effect of surface tension.
In that case, if we use the expansion
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in kh of the linear dispersion relation of the capillary-gravity wave (3.35), the KdV equation can
be derived in the same way as follows:
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As shown by (5.8), if h2

3
�

�
�g
> 0, including the case of perfect gravity waves (� D 0), the effect

of dispersion (i.e., the effect that the wavelength is not infinite) works to lower the frequency
(and hence the propagation velocity) and is called “negative dispersion.” On the other hand,
when the effect of surface tension is large so that h2

3
�

�
�g
< 0, the effect of dispersion works to

increase the frequency and the propagation velocity, and is called “positive dispersion.”
In the above, we used the water wave as an example and derived the KdV equation in an

intuitive way. However, as its derivation process shows, any system, regardless of what physical
phenomena it describes, can be approximated by the KdV equation

@u

@t
C c0

@u

@x
C ˛u

@u

@x
C ˇ

@3u

@x3
D 0 (5.10)

in the weakly nonlinear and weak dispersion limit, as long as the system satisfies the following
three requirements.
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1. Dispersion disappears at the long wave limit k ! 0, and the wave speed of the linear

sinusoidal wave approaches some constant value c0.

2. The velocity c.k/ of the linear sinusoidal wave is expanded as c D c0 � ˇk
2 C � � � in the

vicinity of k D 0.

3. The change of wave velocity due to nonlinearity can be approximated by the first-order
term ˛u of the disturbance u.x; t/.

Therefore, the KdV equation actually appears in common to describe various wave phenomena
such as ion sound waves and magnetic sound waves in plasma, waves in gas-liquid multiphase
fluid, and waves traveling in nonlinear lattices, etc. Thus, the KdV equation is one of the very
general and important nonlinear wave equations.

In the following, we introduce a coordinate system that translates with c0 and write the
KdV equation as

@u

@t
C ˛u

@u

@x
C ˇ

@3u

@x3
D 0: (5.11)

5.2 SOLITARY WAVE SOLUTION: BALANCE BETWEEN
NONLINEARITY AND DISPERSION

Equation (5.11) has the following steady traveling wave solution that propagates at a constant
speed without changing its form:

u.x; t/ D a sech2

�r
˛a

12ˇ
.x � ct � x0/

�
; c D

˛

3
a: (5.12)

This is called the solitary wave solution of the KdV equation and has the following character-
istics.

• It has a pulse shape that is symmetrical about the center of the wave and asymptotically
approaches u D 0 as x !˙1. (This is the reason why it is called solitary wave.) 2

• The propagation velocity of the solitary wave (more precisely, the deviation from the linear
long wave velocity c0) is proportional to the amplitude a. In the case of ˛ > 0 (˛ < 0),
larger solitary waves travel faster (slower).

• The width of the wave is inversely proportional to
p
jaj, and the larger the solitary wave,

the thinner it is.

2The transformation u �! u C u1; c �! c C ˛u1 also gives solutions that asymptote to any non-zero constant
u1.



5.2. SOLITARY WAVE SOLUTION: BALANCE NONLINEARITY AND DISPERSION 83
If there is no dispersion term uxxx in (5.11), any waveform that is input initially steepens

forward (when ˛ > 0) or backward (˛ < 0) as time, and cannot propagate with maintaining a
constant waveform. Also, if there is no nonlinear term in (5.11), the various wavelength com-
ponents that make up the initial waveform propagate at different speeds due to the dispersion
term, and it is not possible to propagate with a constant waveform as well. Therefore, the solitary
wave solution (5.12) is realized only by the coexistence of the nonlinear effect and the dispersion
effect.

In order for a solitary wave solution (5.12) to exist, ˛a=ˇ in the square root must be
positive. This is a good indication that the solitary wave solution is indeed built on a balance
between nonlinear and dispersive effects. For example, in the case of gravity waves (5.7), ˛ > 0,
ˇ > 0, and this condition requires that a > 0, that is, the solitary wave is always a swell of the
water surface as shown in Fig. 5.1a. When ˛ > 0, the nonlinear effect makes the higher part
of the wave to propagate faster, so the waveform tends to lean forward, resulting in generation
of many short wavelength components. However, if ˇ > 0, i.e., there is negative dispersion,
these short wavelength components can propagate only slower than long waves, and there is an
effect of pulling back the forward-leaning waveform due to nonlinearity. In the situation where
˛ > 0, ˇ > 0, if a < 0, that is, if there is a dip instead of a swell on the water surface, both the
nonlinearity and the dispersion become the effect of pulling back the waveform, and the wave
cannot travel while maintaining a constant waveform. Therefore, physical consideration also tells
that only a > 0, that is, upward convex solitary waves should exist in the case of gravity waves
(˛ > 0, ˇ > 0). On the other hand, when the surface tension is superior to gravity, ˛ > 0, ˇ < 0,
the competition and balance between the nonlinear effect and the dispersion effect becomes
possible only in the case of a < 0, and as a result, only solitary waves with depressed water
surface exist.

(a) (b)

Dispersion

(β > 0)

Dispersion

(β < 0)

Nonlinearity

(α > 0)

Nonlinearity

(α > 0)

Figure 5.1: Competition of nonlinearity and dispersion in solitary wave: (a) gravity wave type
and (b) capillary wave type.

The width d of the solitary wave solution (5.12) can be estimated by the reciprocal of the
coefficient of x, and it can be seen that d is related to the coefficients ˛, ˇ of the KdV equation
and the height a of the solitary wave like d D

p
ˇ=˛a. This also indicates that the solitary wave

solution is realized on the balance between nonlinearity and dispersion. When the representative
length of the waveform change is d , the magnitudes of the nonlinear term and the dispersion
term of (5.11) can be estimated by O.˛a2=d/ and O.ˇa=d3/, respectively. In order to balance
the nonlinear effect and the dispersive effect, these two terms need to be of the same size. This
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requires that

˛a2

d
�
ˇa

d3
�! d �

r
ˇ

˛a
; (5.13)

which is exactly the width of the solitary wave solution (5.12). That is, the width of the soli-
tary wave is adjusted so that the magnitudes of the nonlinear and the dispersive effects become
comparable.

EXAMPLE 1: DERIVATION OF SOLITARY WAVE SOLUTION
Find the solitary wave solution (5.12) as the steady traveling wave solution of the KdV equation
(5.11).

[Answer]
The problem is reduced to the boundary value problem of an ordinary differential equation

in the same way as we obtained the shock wave solution of the Burgers equation as the steady
traveling wave solution in Example 2 of Chapter 2. First, assuming that u.x; t/ D U.�/, � D x �
ct , and substituting into the KdV equation (5.11), the following ordinary differential equation
for U.�/ is obtained:

� cU 0
C ˛UU 0

C ˇU 000
D 0; (5.14)

where 0 represents the derivative with respect to �. Integrating this once with taking into con-
sideration the boundary condition U ! 0 .x !˙1/ gives

� cU C
1

2
˛U 2

C ˇU 00
D 0: (5.15)

Multiplying both sides by U 0 and integrating once, and considering U ! 0 .x !˙1/, we get

� cUU 0
C
1

2
˛U 2U 0

C ˇU 00U 0
D 0 �! �

1

2
cU 2
C
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6
˛U 3

C
1

2
ˇU 02

D 0; (5.16)

and finally we get the boundary value problem of a first-order ordinary differential equation�
dU

d�

�2

D
˛

3ˇ
U 2

�
3c

˛
� U

�
; U ! 0 .� !˙1/: (5.17)

It is left for the reader to solve this, and here we only confirm that the solitary wave solution
(5.12) satisfies this equation. First of all, from

sech x D .cosh x/�1
�! .sech x/0 D �sech x tanh x; (5.18)

y.x/ D sech2 x satisfies the equation�
dy

dx

�2

D 4y2.1 � y/; y ! 0 .x !˙1/; (5.19)
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and therefore y.x/ D a sech2 .bx/ satisfies�
dy

dx

�2

D
4b2

a
y2.a � y/; y ! 0 .x !˙1/: (5.20)

Comparing the coefficients of this equation and (5.17), it can be seen that if

a D
3c

˛
; i.e., c D ˛

3
a; and 4b2

a
D

˛

3ˇ
; i.e., b D

r
˛a

12ˇ
; (5.21)

then U.�/ D a sech2 .b�/ satisfies (5.17), and gives the solitary wave solution of the KdV equa-
tion (5.11). |
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Although the concrete expression is not described here, Korteweg and de Vries (1895)
also derived a periodic steady traveling wave solution with a fixed wavelength in addition to the
solitary wave solution. The solution is expressed using Jacobi’s elliptic function cn, and is called
the cnoidal wave. The cnoidal wave agrees with the solitary wave solution at the limit of wave-
length!1 and the sinusoidal wave of the linearized KdV equation at the limit of amplitude
! 0. In this sense, the cnoidal wave plays a role of continuously connecting the solitary wave
solution, which is a typical nonlinear wave, and the linear sinusoidal wave solution.

5.3 SOLITON: SOLITARY WAVE WITH PARTICLE
NATURE

5.3.1 DISCOVERY OF SOLITON
It was the work of Zabusky and Kruskal (1965) [21] that made the KdV equation, which had
already been derived in 1895, famous again. They performed numerical simulations to solve the
initial and boundary value problem of the KdV equation as follows3:

@u

@t
C u

@u

@x
C ı2 @

3u

@x3
D 0; ı D 0:022; u.x; 0/ D cos�x; u.0; t/ D u.2; t/: (5.22)

As a result, they found following properties.

1. The initial waveform splits into multiple pulses under the influence of the dispersion term
after steepening due to the nonlinear term.

2. These pulses can be considered as solitary wave solutions of the KdV equation from their
waveforms and from the relationship between wave height, width, and propagation veloc-
ity.

3In the background of their numerical study of KdV equation, there was a wider awareness on nonlinear physical problem,
which is related to the basis of statistical mechanics. See Appendix G for this point.



86 5. KDV EQUATION: EFFECT OF DISPERSION
3. Since these solitary waves have different propagation speeds, they collide with each other

under the periodic boundary condition. However, in each case, it reappears after a collision
with almost no change in size or shape.

Figure 5.2 shows the result of the numerical simulation almost the same as theirs. In the right
figure, the value of u is expressed in grayscale, and the whitish lines represent the movement of
the peak positions of the solitary waves formed by the split. It can be seen that the solitary waves
move with holding their identity while colliding. Zabusky and Kruskal named this solitary wave
soliton because the solitary wave of the KdV equation is thus extremely stable to the interaction,
as if it behaved like a particle.4

u t
x

x

0
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3

2

1

0
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t=0
t=1

0.50 1.5

1.00.5 1.5 2.0

1 2

(a)
(b)

Figure 5.2: Numerical simulation of Zabusky–Kruskal (1965) [21]: (a) the profile of u at t D 0
and t D 1 and (b) trajectories of the solitary waves. The white part has a larger value of u.

In a linear system, such particle behavior is not surprising at all. In linear systems, su-
perposition of solutions is allowed. Therefore, if there were two solitary wave solutions u1.x; t/,
u2.x; t/ with different propagation speeds, and if we employed u.x; 0/ D u1.x; 0/C u2.x; 0/ as
the initial condition with the initial positions being adjusted so that the faster of the two comes
behind, then it is obvious that the faster solitary wave behind would overtake the slower solitary
wave ahead with time without loosing its identity.

The reason that the numerical result of Zabusky and Kruskal (1965) was so surprising
is that the KdV equation is a nonlinear equation for which the superposition is not allowed.
In the KdV equation, u1.x; t/C u2.x; t/ cannot be a solution even if u1.x; t/ and u2.x; t/ are
solutions. As we saw in the previous section, the solitary wave solution of the KdV equation is
an essentially nonlinear solution which is realized on the balance between the nonlinear effect
and the dispersive effect. It is very strange that such nonlinear solutions are (looks like) passing
with each other without any interaction. However, as seen coming up, the solitary waves are not

4Like protons, electrons, etc., the suffix “–on” gives the impression of “particles.”
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actually just passing through each other, but exert a strong and complicated nonlinear interaction
with each other at the time when they are close.

In Section 1.2 of Chapter 1, we studied that when the functions T , X of the dependent
variable u satisfy

@T

@t
C
@X

@x
D 0; (5.23)

this expresses a conservation law of certain physical quantity such that T and X are its density

and flux, respectively. If X becomes 0 as jxj ! 1, (5.23) means that d
dt

Z 1

�1

T dx D 0, that

is,
Z 1

�1

T dx is a conserved quantity. In fact, it is known that the KdV equation has an infinite
number of conservation laws like (5.23) [15]. Specifically, for the KdV equation of the form
(5.11), the first three are given as follows:
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It is known that there is a close relationship between the particle-like stability and self-holding
ability of the solitons and the fact that the KdV equation has an infinite number of conservation
laws. Also, apart from the types of conservation laws for which the density is given by polyno-
mials of u and its x derivatives as above, the following is known to hold as a conservation law
that depends explicitly on x:

d

dt

Z 1

�1

xudx D constant; (5.25)

which means that the propagation velocity of the “center of mass” of u is constant.

5.3.2 INVERSE SCATTERING METHOD: EXACT SOLUTION OF KDV
EQUATION

Immediately after the impact of soliton discovery by Zabusky and Kruskal [21], Gardner et
al. [6, 7] developed an innovative method to analytically solve the initial value problem of the
KdV equation for any initial conditions that decays fast enough in jxj ! 1. In this method,
the solution u.x; t/ of the KdV equation
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is identified with the potential u.x/ of the time-independent Schrödinger equation

�
d2�

dx2
C u� D �� (5.27)

in quantum mechanics.5
If the potential u.x/ decays at jxj ! 1, (5.27) becomes

�
d2�

dx2
D �� (5.28)

at jxj ! 1, so for states with energy level � > 0 and can be written as � D k2 .k > 0/, the
behavior of �.x/ for jxj ! 1 is a linear combination of e˙ikx . By properly normalizing, we can
construct a solution that satisfies the boundary condition

�.x/ �

(
e�ikx CR.k/eikx .x !C1/

T .k/e�ikx .x ! �1/:
(5.29)

This is called the wave function of scattering state. This solution corresponds to the situation
that a material wave of amplitude 1 is incident from x !C1, of whichR.k/eikx is reflected by
the potential u.x/ and T .k/e�ikx is transmitted. Therefore, R.k/ and T .k/ are called reflection
coefficient and transmission coefficient, respectively, and jR.k/j2 C jT .k/j2 D 1 holds from the
conservation of probability.

On the other hand, for the state with � < 0 and can be written as � D ��2 .� > 0/, the
behavior of �.x/ at jxj ! 1 is a linear combination of e˙�x , and it must be like

�.x/ �

(
c.�/e��x .x !C1/

d.�/e�x .x ! �1/
(5.30)

in order for �.x/ not to diverge at jxj ! 1. The existence of such exponentially decaying wave
functions in both x !˙1 directions is possible only for finite number of specific energy levels
�n D ��

2
n .n D 1; 2; : : : ; N / determined from the potential u.x/. In addition, when the normal-

ization condition
R1

�1
j�.x/j2 dx D 1 is requested, the coefficients cn .D c.�n// are determined,

and corresponding dn .D d.�n// are also determined automatically. The �.x; t/ thus normalized
is called the wave function of bound state (Fig. 5.3).

The combination of the reflection coefficient R.k/ of the scattering state and �n .n D

1; 2; : : : ; N / and the normalization coefficient cn .n D 1; 2; : : : ; N / of the bound state is called
the scattering dataThe problem of finding these scattering data for a given potential u.x/ is called

5Quantum mechanics is the dynamics that governs physical phenomena in the micro world such as molecules and atoms,
and protons, neutrons and electrons that constitute them. And the Schrödinger equation (5.27) is an equation that the steady-
state wave function �.x/ of energy level � should satisfy, and the existence probability of the micro particle is proportional to
j�.x/j2.
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φn(x) → cne
–knx(x → ∞)
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–κ1
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Figure 5.3: Scattering state and bound state of a potential u.x/.

the scattering problem. Conversely, it is also known that the potential u.x/ can be determined
from the scattering data alone, and a specific method for obtaining u.x/ from the scattering
data has also been developed.6 The problem of determining the potential from scattering data
in this way is called the inverse scattering problem.

Gardner et al. investigated the time evolution of each of the scattering data when the
potential u.x/ of the Schrödinger equation (5.27) changes with time according to the KdV
equation (5.26). As a result, they found that they can be expressed in very simple forms that do
not include u.x; t/, as follows:

d�n

dt
D 0 �! �n.t/ D �n.0/; (5.31a)

dcn

dt
D 4�3

ncn �! cn.t/ D cn.0/ e4�3
nt ; (5.31b)

dR.k/

dt
D 8ik3R.k/ �! R.k; t/ D R.k; 0/ e8ik3t : (5.31c)

Based on the above results, Gardner et al. proposed the following method to analytically
solve the initial value problem of the KdV equation.

1. First, solve the scattering problem of the Schrödinger equation (5.27) with the initial
waveform u.x; 0/ of the KdV equation as the potential, and find the scattering data
fR.k; 0/; �n.0/; cn.0/g for u.x; 0/.

2. Find the scattering data fR.k; t/; �n.t/; cn.t/g at time t when the potential u.x/ changes
with time according to the KdV equation from (5.31).

3. Solve the inverse scattering problem for the scattering data at time t and find the corre-
sponding potential u.x; t/, i.e., the solution of the KdV equation at time t .

This method of solution of the KdV equation is called the inverse scattering method. The
procedure of the inverse scattering method is shown graphically in Fig. 5.4.

6Although not specifically described here, it results in solving a linear integral equation called the Gel’fand–Levitan–
Marchenko equation.
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u(x, t) scattering data at t

Inverse
Scattering Problem

Scattering Problem
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   KdV Equation
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Scattering Data

u(x, 0) scattering data at t = 0

Figure 5.4: Solution procedure of the inverse scattering method.

Fourier Transform
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u ̂ (k, t) = u ̂ (k, 0)e–iw(k)t

u(x, 0) FT u ̂(k, 0) at t = 0

Figure 5.5: Solution procedure of linear problem.

This method is similar to the method of solving an initial value problems of a linear partial
differential equation with constant coefficients using Fourier transform (See Fig. 5.5). Let

@u

@t
C L.u/ D 0 (5.32)

be a constant coefficient linear PDE to be solved. Here, L.u/ is linear in u.x; t/ and includes
u and its partial derivatives with respect to x. Let ! D !.k/ be the linear dispersion relation
obtained by substituting a ei.kx�!t/ into (5.32).When the initial waveform u.x; 0/ is represented
by Fourier transform as

u.x; 0/ D

Z 1

�1

Ou.k; 0/ eikx dk; (5.33)

the waveform u.x; t/ at an arbitrary time t is given by

u.x; t/ D

Z 1

�1

Ou.k; 0/ eiŒkx�!.k/t� dk D

Z 1

�1

h
Ou.k; 0/e�i!.k/t

i
eikx dk; (5.34)

That is, the initial value problem of (5.32) can be solved by the following procedure.

1. Find the Fourier transform Ou.k; 0/ of the initial waveform u.x; 0/.

2. Find the Fourier transform Ou.k; t/ at t by Ou.k; 0/ expŒ�i!.k/t �.

3. Find u.x; t/ by inverse Fourier transform of Ou.k; t/.
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Looking at the relationship with the inverse scattering method, the Fourier transform and the
inverse Fourier transform correspond to the process of solving the scattering problem and the
inverse scattering problem, respectively, the Fourier transform Ou.k; 0/ corresponds to the scatter-
ing data, and the process of updating Ou.k; t/ using the dispersion relation as Ou.k; 0/ expŒ�i!.k/t �
corresponds to the process of updating the scattering data using (5.31).

A particularly important point in the connection between theKdV equation (5.26) and the
Schrödinger equation (5.27) is that as long as u.x; t/ changes according to the KdV equation,
no matter how much the waveform changes, the energy level ��2

n of the bound state of the
Schrödinger equation does not change as shown in (5.31a). According to the inverse scattering
method, each of the N bound states of the Schrödinger equation (5.27) corresponds to one
solitary wave

ui .x; t/ D �2�
2
i sech2

˚
�i .x � 4�

2
i t � xi /

	
.i D 1; : : : ; N / (5.35)

of the KdV equation, and it can be said that the invariance of this energy level supports the
remarkable stability of KdV solitons.

The KdV equation is an equation originally derived as an equation describing water waves
with long wavelength. On the other hand, the Schrödinger equation is a governing equation
in quantum mechanics targeting atomic and elementary particle level motion. The keen insight
(inspiration) of Gardner et al. that makes it possible to develop an innovative solution method
for the initial value problem of nonlinear PDE by connecting two equations that have been
known in completely different contexts may be a good example of “serendipity.”

For more details of the inverse scattering method, see [1] and [19], for example.

5.3.3 SOLITON INTERACTION
For the KdV equation, an analytical solution called “N -soliton solution” that describes the in-
teraction of N solitons is known. Here, as a typical example of soliton interaction, we will show
only the 2-soliton solution expressing overtaking of two solitons.The two soliton solution u.x; t/
of the KdV equation (5.26) is represented as

u D �2 .lnf /xx ; f D 1CE1 CE2 C

�
�1 � �2

�1 C �2

�2

E1E2;

Ei D expŒ2�i .x � 4�
2
i t � xi /� .i D 1; 2/: (5.36)

Here, if �2 D 0, it results in the 1-soliton solution (5.35) corresponding to �1. As an example,
the case of �1 D 1, �2 D 2 is shown in Fig. 5.6. From (5.35), this solution shows that the soliton
with height 8 and velocity 16 overtakes the soliton with height 2 and velocity 4.

At first glance, the high and fast soliton seems to overtake the low and slow soliton as
if they were linear waves and without any interaction. However, looking closely, we can find
evidences that there is significant nonlinear interactions between them. One evidence is in the
waveform when two solitons overlap. If it is a simple linear wave interaction, the height of the
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Figure 5.7: Phase shift in soliton interaction.

waveform that is generated when the two overlap should be 10 .D 8C 2/, but the height of the
waveform at that time is only 6 as shown in Fig. 5.6. This alone shows that the two solitary
waves do not simply overlap.

Another evidence is in the phase shift. Figure 5.7 shows the trajectories of the two solitons
in the xt-plane. As you can see from the figure, the position of the two solitons are different
from that when there is no interaction between them (dotted line). It can be seen that the higher
soliton is pushed forward, while the lower soliton is pulled backward.

Although in the case treated here the waveform has only one peak when the two solitons
overlap, it is known that the behavior of the waveform when two solitons approach is classified
into the following two types depending on the amplitude ratio. In the case of �2

2=�
2
1 > .3Cp

5/=2 � 2:62, the smaller soliton is swallowed by a larger soliton, and the waveform temporarily
becomes one peak as in the case shown in Fig. 5.6. On the other hand, in the case of 1 <
�2

2=�
2
1 < .3C

p
5/=2, an “exchange of roles” takes place between the solitons and the waveform

always keeps to have two peaks. Interestingly enough, this result was derived using only the
first three conservation laws (5.24) of the KdV equation, without knowing the exact 2-soliton
solution [13].
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As a method of finding soliton solutions, Hirota’s direct method is also well known [9].

This method enables us to obtain the N-soliton solution without using the inverse scattering
method.

EXAMPLE 3: NUMERICAL SIMULATION OF KDV EQUATION
Reproduce the overtaking of two solitons shown in Fig. 5.6 by direct numerical simulation of
the KdV equation (5.26).

[Answer]
Zabusky–Kruskal (1965) used the following finite-difference scheme:
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; (5.37)

where uj
i D u.i�x; j�t/. Since this scheme approximates the time derivative with a central

difference, not only the values in j th steps and but also .j � 1/th steps are required to calculate
the value of .j C 1/th step.7 Therefore, even when the initial condition is given, it cannot start
by itself. However, for example, the forward difference (Euler’s method) may be used to calculate
the first step, and then (5.37) may be used after the second step. If it is bothersome, there would
be no particular problem even if you use Euler’s method not only to obtain the second step but
to also calculate all the steps after the second step.8 For explicit difference schemes for the KdV
equation, including the Zabusky–Kruskal scheme, see, for example, [18].

5.3.4 APPLICATION OF SOLITON THEORY TO WATER WAVES
The KdV equation (5.7) for the gravity waves on water surface can be converted to the standard
form (5.26) by the variable transformation

� D
1

6

r
g

h
t; � D

.x �
p
gh t/

h
; u D �

3�

2h
: (5.38)

7Such a scheme is often called the “leap-frog method.”
8Actually, in the numerical simulation shown in Fig. 5.2, all time evolution is performed by this method.
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Using this correspondence, the main properties of the solution of the KdV equation that can be
obtained from the theory of the inverse scattering method can be expressed in terms of water
waves as follows.

1. Any initial waveform that decays fast enough as jxj ! 1 splits into stationary solitary
wave solutions (solitons) and dispersive wave trains (tails).

2. The amplitude of the tail decays with time like t�1=3.

3. If the area of the initial waveform
R1

�1
�.x; 0/ dx is positive, at least one soliton appears.

4. No soliton appears if �.x; 0/ < 0 for all x.

5. The number N of solitons emerging from the initial waveform �.x; 0/ is given by the
number of bound states of the Schrödinger equation (5.27) with u.x/ D �3�.x; 0/=2h
as the potential, and the wave height an .n D 1; : : : ; N / of each solitary wave is given by
an D 4�

2
nh=3 by the energy level ��2

n of the corresponding bound state.

The time required for the initial waveform to split into solitons can be roughly estimated as
follows. Let the maximum value of the initial waveform �.x; 0/ and the typical length (width) be
�0 and l , respectively. In this case, considering (5.38), the maximum depth of the potential of the
corresponding Schrödinger equation is �3�0=2h, and the energy level of the bound state never
falls below this value. This means that the maximum wave height of the soliton that can appear
from this initial waveform does not exceed 2�0, so that its speed does not exceed

p
gh.1C

�0=h/. On the other hand, since the lower limit of possible soliton speeds is
p
gh, a measure

of the speed difference �c between the fastest and the slowest solitons is given by
p
gh .�0=h/.

The measure of the time ts required for soliton splitting can be estimated by the time when the
distance between the fastest soliton and the slowest soliton becomes about the width l of the
initial waveform. So, for ts and the propagation distance ds required for soliton splitting, we
obtain the following estimate:

ts D l=�c D
p
h=g .l=�0/; ds D

p
gh ts D lh=�0: (5.39)

ds gives a measure of the required length of the water tank when reproducing soliton splitting
in a wave tank experiment.

The behavior of the solution of the KdV equation predicted by the inverse scattering
method is compared with the results of the wave tank experiment, and it is reported that the
agreement between the two regarding the number of appearing solitons and their wave heights
etc. is quite good, if the effect of viscous damping at the tank wall is properly taken into consid-
eration [8]. Also, the split into solitons has actually been reported in several tsunamis, including
the giant tsunami that struck the Pacific coast of Tohoku region during the 2011 Great East
Japan Earthquake.
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The fact that a very stable pulse structure can exist due to nonlinear effects, like KdV

solitons, has not only affected water wave researches, but has had a great impact on a wide range
of natural sciences. For example, there is even a somewhat intriguing attempt to explain the
sustaining mechanism of Jupiter’s Great Red Spot (Fig. 5.8), that has been present for many
years, using the exceptional stability of the KdV soliton [14].

Figure 5.8: The KdV soliton may have something to do with Jupiter’s Great Red Spot.

5.4 RELATIVES OF KDV EQUATION
As can be seen from the argument made at the beginning of this chapter when the KdV equation
(5.7) is derived in the context of water waves, at the starting point of the KdV equation there
is the situation of “linear long wave” which considers neither nonlinearity nor dispersion, that
is, the situation where the nonlinear effects can be neglected because the amplitude is small
enough, and at the same time, the dispersion effect can also be ignored because the wavelength
is long enough compared to the water depth. According to the KdV equation of the form (5.10),
this situation is represented by ut C c0ux D 0 consisting of only the first two terms. The KdV
equation (5.10) is then obtained as a result of adding to this the third term to capture the weak
nonlinear effect, and adding the fourth term to capture weak dispersive effect at the same time.
According to the concept of this derivation, the first and the second terms of the KdV equation
(5.10) are much larger than the latter two terms.

Let us consider this a little more quantitatively, in line with the KdV equation (5.7) for
water waves. Let a be the representative values of �.x; t/, l be the representative length of the
spatial variation of �(i.e., x-dependence), and l=c0 .c0 D

p
gh/ be the representative time of

temporal variation of �. If we introduce the dimensionless parameters � and � by � D a=h,
� D .h=l/2, the assumption of weak nonlinearity means � � 1, and the assumption of long
wave corresponds to �� 1. When the magnitude of each term of (5.7) is estimated using these,
the first and second terms are O.c0a=l/, the third term is O.c0�a=l/, and the fourth term is
O.c0�a=l/, so the relative magnitude to the first term is 1 W 1 W � W �.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-022.jpg&w=144&h=120
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It should be remembered that, in the process of deriving the KdV equation, higher-order

terms in kh and hence in � are discarded when expanding and truncating the dispersion relation
around the long wavelength limit. Also, when rewriting the nonlinear terms, higher-order terms
in a=h and hence those in � are discarded. Therefore, the KdV equation is an approximate
equation containing errors. The right side is not really zero. There should be terms of O.�2; �2/

or higher-order relative to the first term, but they are just not written. If we think this way, there
is no problem in rewriting, for example, the dispersion termCuxxx of the KdV equation (5.10)
to �uxxt=c0. From (5.10), ux D �ut=c0 CO.�; �/, thus even if we replace ux ! �ut=c0 in
the dispersion term of O.�/, the newly generated error is relatively only OŒ� � .�; �/�, and this
degree of error is ignored from the beginning. Thus, in the higher-order terms (the nonlinear
term and the dispersion term) of the KdV equation (5.11), some of the x-derivatives can be
replaced by t-derivatives by using the lowest order relation @=@t � �c0@=@x without affecting
the quality of the approximation. Therefore, we can obtain the following equations having the
same validity as the KdV equation:

ut C c0ux C

�
˛uux

�.˛=c0/uut

�
C

8̂̂<̂
:̂

ˇuxxx

�.ˇ=c0/uxxt

C.ˇ=c2
0/uxtt

�.ˇ=c3
0/ut t t

9>>=>>; D 0: (5.40)

Among these,
ut C c0ux C ˛uux � .ˇ=c0/uxxt D 0; (5.41)

in which one of the three x derivatives in the dispersion term is replaced by a t derivative, is
studied in detail by Benjamin, Bona and Mahony (1972) [3], and, by taking the first letter of
the three, is called BBM equation, or the “Regularized Long Wave equation,” or the “RLW
equation” for short. The linear dispersion relation of KdV equation (5.11) is given by

!.k/ D c0k � ˇk
3: (5.42)

According to this, the gravity wave with k such that k >
p
c0=ˇ will propagate in the negative

x direction, contrary to the assumption of the equation’s derivation. Moreover, there is no lower
limit to the phase velocity and group velocity, and the component with a large wavenumber is
transmitted at a very high speed in the �x direction. On the other hand, the linear dispersion
relation of the BBM equation (5.41) is given by

!.k/ D
c0k

1C ˇk2=c0

; (5.43)

and for small k, it naturally is very close to the dispersion relation of KdV (5.42), but unlike
(5.42), gives finite positive phase velocity and group velocity for all k. BBM equations also have
solitary wave solution as a steady traveling wave solution. However, when the overtaking of two
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BBM solitary waves is examined by numerical simulation, a small tail part is generated after
overtaking, and therefore it does not seem to be a soliton in a strict sense. As the KdV equation
gets in the limelight by the discovery of solitons and the success of the inverse scattering method,
the BBM equation seems to have been losing its popularity. However, as discussed above, both
the KdV and the BBM equations have the same value as approximations to the original physical
system. If we respect the physical meaning of these equations, it is not reasonable to argue the
superiority or inferiority of these equations depending on whether their solitary wave solutions
exhibit soliton-like behavior. Rather, restricting the application of these equations only to those
situations in which the behaviors of their solutions do not differ appreciably would be the proper
way of use as approximate equations.

In addition to the equations in (5.40), many “relatives” are known for the KdV equation.
Here are some typical ones.

• 2D KdV equation
.ut C c0ux C ˛uux C ˇuxxx/x D uyy : (5.44)

An extended version of the KdV equation that also takes into account slow changes in the
y direction perpendicular to the wave propagation direction x. Since it was first investi-
gated by Kadomtsev-Petviashvili (1970) [11], it is also called the Kadomtsev–Petviashvili
equation, or KP equation for short.

• KdV Burgers equation

ut C c0ux C ˛uux C ˇuxxx D �uxx : (5.45)

In addition to nonlinearity and dispersion, this equation also considers the diffusion effect.

• Modified KdV equation

ut C c0ux C ˛u
2ux C ˇuxxx D 0: (5.46)

Approximate equation for wave called “Alfven wave” in plasma, for example. Unlike the
KdV equation, it has a third-order nonlinear term. This equation is also known to have
played an important role in the process of Gardner et al. developing the inverse scattering
method for the KdV equation.

• Benjamin–Ono equation [2] and [16]

ut C c0ux C ˛uux C HŒuxx� D 0; (5.47)

where H denotes the Hilbert transform defined by

HŒf .x/� D 1

�
P
Z 1

�1

f .x0/

x0 � x
dx0; (5.48)
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whereP stands for the principal value of the singular integral. Since the Hilbert transform
of eikx is given by

H
h
eikx

i
D i sgn.k/ eikx; (sgn is the sign function taking C1 or �1), (5.49)

the linear dispersion relation of the Benjamin–Ono equation (5.47) is given by

! D c0k �  jkjk: (5.50)

In the case where ! is approximated in the vicinity of the long wave limit k ! 0 by ! D
c0k �  jkjk instead of ! D c0k � ˇk

3, the Benjamin–Ono equation is derived instead
of the KdV equation as an approximate equation. For example, in the phenomenon of
interfacial wave in a two-layer fluid system in which two fluids with different densities
overlap, this Benjamin–Ono type dispersion relation may appear.9

5.5 WHITHAM EQUATION AND WAVE BREAKING
There are two types of “limit of solution” for gravity waves. One relates to the Stokes wave, i.e.,
the periodic steady traveling wave solution considering nonlinear effects which we discussed
in Chapter 3. In the Stokes wave, the crest of the wave gets more peaky as the wave height
increases, and when it reaches a limiting wave height, the crest loses smoothness and reaches
an angle of 120ı. Let’s call this phenomenon “peaking.” The critical wave height for deep water
gravity waves is known to be about 0.142 times the wavelength. There is no periodic steady
traveling wave solution with a wave height exceeding this limiting wave height as discussed in
Section 3.4.

Another “limit of solution” relates to unsteady propagation of long waves. As we saw in
Chapter 1, when only the effect of nonlinearity is considered as in (5.1), the higher part of the
waveform propagates faster. As a result, the front of the waveform becomes steeper as the wave
propagates, eventually leading to the appearance of infinitely large surface slope, which we call
here “breaking.” When water waves hit a structure such as a breakwater, it is known that the
magnitude of the impact pressure applied varies greatly depending on whether or not the waves
are broken. Thus, the wave breaking is an important problem in engineering.

Although both “peaking” and “breaking” are interesting nonlinear phenomena that ac-
tually occur in real water waves, unfortunately neither of them can be reproduced by the KdV
equation. For example, in the KdV equation, there is a very stable pulse-like steady traveling
wave solution called soliton, but there is no limit to its wave height, and no matter how large
the wave height is, the peak of the crest remains smooth and does not become an angle. Also

9As seawater near the surface of the ocean is warmed and lightened by strong solar radiation, it becomes less likely to mix
with cooler and heavier water below it. As a result, in the ocean, a layer where the density of seawater changes rapidly may be
formed around several hundred meters of water depth, and it is called “thermocline” or “pycnocline.” The same kind of abrupt
change in density is often seen also in lakes. Such a situation can be treated approximately as a two-layer fluid system.
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for non-stationary evolution of waveform starting from an arbitrary initial waveform, even if
the waveform leans forward to some extent due to nonlinearity, the dispersion term (uxxx term)
always holds back, and the wave never breaks.

From such a background, Whitham was searching for a simple model wave equation that
can reproduce both the peaking and breaking of waves. In the process, he proposed the following
model equation:

ut C ˛uux C

Z 1

�1

K.x � �/u�.�; t/ d� D 0; (5.51)

with a nonlinear term of the same type as KdV equation and a linear integral term. (See, for ex-
ample, Section 13.14 of [20].) If u.x; t/ D aei.kx�!t/ is substituted into (5.51) after linearization
by ignoring the nonlinear term,

� i!aei.kx�!t/
C

Z 1

�1

K.x � �/aikei.k��!t/ d� D 0;

�! c.k/ D
!

k
D

Z 1

�1

K.x � �/e�ik.x��/ d� D

Z 1

�1

K.x/e�ikx dx: (5.52)

Therefore, by adopting the Fourier transform of the phase velocity c.k/ asK.x/, it is possible to
give (5.51) a desired linear dispersion relation ! D kc.k/.10

Among various possibilities, Whitham especially focused on the case of
K.x/ D Kw.x/ D Be�bjxj .b > 0/. In the following, the equation

ut C ˛uux C

Z 1

�1

Be�bjx��ju�.�; t/ d� D 0 (5.53)

that adopts thisKw.x/ in (5.51) is called the Whitham equation. The linear dispersion relation
of (5.53) is given by

c.k/ D

Z 1

�1

Kw.x/e�ikx dx D
2Bb

k2 C b2
�! !.k/ D

2Bbk

k2 C b2
: (5.54)

Whitham has shown that the peaking occurs for (5.53), that is, the steady traveling wave
(periodic wave and solitary wave) has an upper limit of the wave height, and the waveform has a
sharp angle at the wave crest. For example, when ˛ D 1, B D �=4, b D �=2, the limiting wave
height of steady traveling solitary wave solution is 8

9
, and its waveform and speed are given by

u.x; t/ D
8

9
e� �

4 jX j; X D x � Ut; U D
4

3
: (5.55)

The wave crest angle of this waveform is 110ı. This value is very close to the wave crest angle 120ı

at the limiting wave height of the real surface gravity wave, but this is merely a coincidence. In
10Both c.k/ and K.x/ are assumed to be real even functions.
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addition, for the Whitham equation (5.53), it is shown mathematically and numerically that the
wave breaking can also occur and the slope of the waveform may diverge [5] and [17]. Figure 5.9
is an example of results of numerical simulations of (5.53). It can be confirmed that the initial
waveform u0.x/ D sin x gradually inclines forward and the front face of the waveform becomes
almost vertical in a finite time.
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Figure 5.9: A numerical result showing wave breaking inWhitham equation (B D 2:5, b D 0:5).

COFFEE BREAK
The solitary wave of the KdV equation was first observed from a scientist’s point of view one day
in August 1834, at the Union Canal outside Edinburgh, Scotland. John Scott Russell (1808–
1882), a shipyard engineer and a researcher on fluid mechanics, was walking along the canal on
horseback. At that time the canal was an important route of goods transport. The method of
transporting goods was to float a flat-bottomed boat called “barge” on the canal, load the goods
on it, and pull it by the horse from the road along the canal. George Stephenson developed a
practical steam locomotive from the late 1810s to the 1820s, and Russell seemed to be looking
around the canal, examining the possibility of introducing a steamship into canal transport.

At that time, when a certain barge which had been pulled by a horse stopped suddenly,
some amount of water had swelled at the bow of the barge, and a beautifully shaped swell started
to propagate along the canal at a constant speed with almost no attenuation. Scott Russell was
very much interested in the phenomenon, got on the horse and chased the wave for a couple
of kilometers, but eventually he lost sight of the wave at a corner of the canal. After that, he
conducted research on this beautiful “The great wave of translation” by using an actual canal and
a wave flume built in his own garden, and found out various properties of solitary waves and
reported them as a paper.

However, G. B. Airy (1801–1892), who later served as the director of the famous Green-
wichObservatory for 45 years and had an influence on the scientific community at that time, and
Stokes, to whom we mentioned in Chapter 3 as the first person who had introduced nonlinear
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corrections for periodic surface waves now called the Stokes wave, seem to have been negative
that no such solitary wave could be present that would translate with a constant waveform as
reported by Russell [4, 10]. The solitary wave of Russell finally recovered its honor when Ko-
rteweg and de Vries derived in 1895 an approximate equation for a long wave that later called
the KdV equation, and clearly showed that the equation has a solitary wave solution as a steady
traveling wave solution, more than 60 years since Russell’s “Discovery” of the solitary wave.

Figure 5.10 shows a picture of researchers enjoying generating a solitary waves that Russell
might have seen by stopping the boat suddenly near the Union Canal when an international
conference focused on solitary waves (solitons) was held in the United Kingdom.

Figure 5.10: Reproduction of Russell’s solitary wave in the Union Canal.
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C H A P T E R 6

Modulation and
Self-Interaction of a Wavetrain

Since dispersive waves like water wave have different propagation speeds depend-
ing on the wavelength, they are automatically sorted according to the wavelength as
they travel for a long distance, and reach a state where it looks like a sinusoidal wave-
train with almost uniform wavelength when viewed locally. Such a wavetrain whose
wavelength and amplitude change only slowly in space and time is called a “modu-
lated wavetrain” or “quasi-monochromatic wavetrain.” In this chapter, we will study
the effects of dispersion and nonlinearity on such modulated wavetrains, and the
various phenomena resulting from the competition between the two effects.

6.1 MODULATED OR QUASI-MONOCHROMATIC
WAVETRAIN

As discussed in Section 3.2, the gravity wave on water surface is dispersive, and the wave prop-
agation velocity depends on the wavelength and frequency. This dispersion becomes weaker as
the wavelength � becomes longer compared to the water depth h, and all waves with wavelengths
far longer than h propagate at the same speed of

p
gh. In Chapter 5, we considered those waves

whose wavelengths are somewhat shorter than this long wave limit and still had a weak disper-
sive effect. In the ocean, the area where waves that allow such treatment exist is basically limited
to the coastal area. On the other hand, for most of the ocean waves that exist widely on the off-
shore sea surface, the water depth is much deeper than their wavelengths, mostly corresponding
to the deep water wave state, and thus the waves have strong dispersion.

If the wave has strong dispersion, the wave is automatically sorted according to the wave-
length and frequency as it propagates. For example, let’s assume that a storm develops in a certain
sea area and a strong wind blows. Waves of various wavelengths are excited simultaneously by
the strong wind. Therefore, the wave field in that area is in a very irregular state including a wide
range of wavenumber and frequency components. These waves that are generated by the storm
travel through the stormy area to other areas. Then, due to the difference in the propagation
velocity caused by the dispersion, the location is gradually divided according to the wavenumber
and frequency. For example, let’s imagine the situation one day after the waves are generated by
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the storm. Considering that wave energy travels at the group velocity,1 a wave with period of 10
s will travel about 670 km from the place where it was generated, while a wave with period of
11 s will travel about 740 km away. Even with these two component waves that differ in period
only by 1 s, they will be observed at a distance of 70 km or more from each other one day after
departure from the stormy area. As described above, in the dispersive wave, components having
different wavelengths and frequencies are spatially separated with time, so when viewed locally,
a state in which the wavelength and frequency are constant and close to a uniform wavetrain is
realized spontaneously. Such a wavetrain that appears to be a substantially uniform wavetrain
locally, but whose amplitude and wavelength are slowly changing is called a modulated wave-
train. From the Fourier analysis point of view, the perfectly uniform wavetrainA cos.k0x � !0t/

has a line spectrum in which the energy is concentrated only at wavenumber k0. On the other
hand, the modulated wavetrain has a narrow spectrum centered on a certain wavenumber, and
is also called a quasi-monochromatic wavetrain.

The fact that the amplitude and wavelength of the wavetrain vary very slowly in the phys-
ical space and the fact that the spectrum is very narrow in the spectral space such as frequency
space and wavenumber space are equivalent. If we are more conscious of the former aspect, we
will call it a “modulated wavetrain,” while if we are more conscious of the latter aspect, we will
call it a “quasi-monochromatic wavetrain.”

6.2 GROUP VELOCITY
6.2.1 GROUP VELOCITY AS PROPAGATION VELOCITY OF

MODULATION
Consider a quasi-monochromatic wavetrain whose spectrum is narrow and its amplitude and
wavenumber change slowly with respect to x and t . So far, when words such as “long,” “fast,”
etc. are used, we have repeatedly stated that “compare to what” must be clearly understood. For
example, in the case of the KdV equation in the previous chapter, the target wave was a “long
wave,” in the sense that it had a long wavelength � compared to the water depth h. Then, if ı is
introduced as ı2 D h=�, ı is a small non-dimensional parameter, and by using the perturbation
method based on ı, a complex system of basic equations for water waves could be reduced to the
much simpler KdV equation. At the same time, it was also possible to understand the range of
validity of the KdV equation by evaluating the magnitude of the terms neglected in the process
of derivation.

Also in the case of quasi-monochromatic wavetrains to be dealt with in this chapter, when
we say “the amplitude or wavenumber is slowly changing,” it is necessary to clearly specify “how
slow and compared to what.” However, let us turn it to the next section, and we will understand
it vaguely here to the extent that they hardly change in the length of several wavelengths or

1We will deal with this subject in detail in the next section.
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so. Also, in this section, the effect of nonlinearity will not be considered, so the amplitude is
assumed to be infinitesimal.

Since such a quasi-monochromatic wavetrains appear to be approximately sinusoidal lo-
cally, local wavenumber k and frequency ! can be introduced. However, these are not constant,
but change slowly temporally and spatially. Focusing on a short section �x in the wavetrain,
consider the inflow and outflow of waves during a short time �t (see Fig. 6.1).2 Let the waves
be traveling from left to right. During �t , !A�t=.2�/ waves enter from the left end A of the
section, and !B�t=2� waves exit from the right end B. On the other hand, the number of waves
in this section is given by k�x=.2�/. In a slowly changing wavetrain where a smooth k and !
can be defined, it is possible to track each of the waves, and the waves do not suddenly appear
or disappear. Therefore, the increase or decrease of the number of waves in the interval AB is
directly linked to the difference between the inflow and the outflow. From the requirement that
the increase of the number of waves in the section per unit time is equal to the net inflow, we
obtain

@

@t

�
k�x

2�

�
D .!A � !B/

1

2�
D �

@!

@x
�x

1

2�
�!

@k.x; t/

@t
C
@!.x; t/

@x
D 0: (6.1)

This is an equation that may be called the conservation law of waves.

A B

∆x

Figure 6.1: Conservation of waves.

Since we are considering wavetrains whose wavelength and frequency change very slowly,
it can be thought that the dispersion relation ! D !.k/ for the uniform wavetrain holds as it is
between the local k and ! in a good approximation. Therefore, we obtain

@k

@t
C vg

@k

@x
D 0; vg.k/ �

d!.k/

dk
(6.2)

immediately from (6.1). This indicates that a constant value of k propagates at a speed of vg.k/.
If ! is a function of only k, such as ! D !.k/, k D constant immediately means that ! D
constant. Therefore, for !, the equation of the same form holds, i.e.,

@!

@t
C vg

@!

@x
D 0: (6.3)

2Since we are going to investigate changes in k and !, when we say “short section �x” and “short time �t ,” they are
short in the sense that k and ! hardly change, and they are much longer than the wavelength and the period, respectively.
Therefore, �x contains a considerable number of waves, and a considerable number of waves pass through during �t .
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The velocity vg defined by vg D d!.k/=dk that appears here is called the group velocity. Equa-
tions (6.2) and (6.3) show that the change of k and ! of the modulated wavetrain are transmitted
at the group velocity vg .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[Supplement]

It is only when the property of the medium through which the wave travels are
spatially homogeneous and temporally stationary that the dispersion relation is given
by ! D !.k/, that is, ! is a function of k only. If the medium changes slowly in time,
the dispersion relation becomes a form that explicitly include t as in ! D !.k; t/, and
if the medium changes slowly in space, it has a form that explicitly includes x such
as ! D !.k; x/.

For example, if the ocean waves travel from offshore to near shore through a re-
gion where water depth h.x/ gradually decreases, the dispersion relation is given by
! D

p
gk tanhŒkh.x/� and depends explicitly on x. In the case of such a dispersion

relation of the type ! D !.k; x/, a change of ! which occurs due to explicit depen-
dence on x is newly generated, in addition to the usual part brought about through
the change of k. In this case, the term @!

@x
in (6.1) becomes

@!

@x
D
@!

@k

ˇ̌̌̌
x

@k

@x
C
@!

@x

ˇ̌̌̌
k

; (6.4)

where @!
@k

ˇ̌̌̌
x

is the partial derivative of ! with respect to k when x is fixed, while

@!

@x

ˇ̌̌̌
k

is the partial derivative of ! with respect to x when k is fixed. Then, if the

group velocity vg is defined as vg D
@!

@k

ˇ̌̌̌
x

, (6.1) gives

@k

@t
C vg

@k

@x
D �

@!

@x

ˇ̌̌̌
k

.¤ 0/; (6.5)

and k is not constant from the viewpoint of the observer moving at vg .
However, by considering

@!

@t
D
@!

@k

ˇ̌̌̌
x

@k

@t
C
@!

@x

ˇ̌̌̌
k

@x

@t
D vg

@k

@t
; (6.6)

and multiplying vg to both sides of (6.1), we see that (6.3) holds as it is even in this
nonuniform case. Thus, a constant value of ! still propagates at the group velocity
vg (not constant, though) even if the medium is not homogeneous, so long as it is
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stationary in time. From this fact, when a swell of a certain frequency travels from
offshore to the shore by passing through a region where the water depth h gradually
decreases, although the wavelength of the swell changes with place, but the frequency
tends to remain constant, and as a result, the wave period takes an equal value no
matter where it is measured from the offshore to a shallower place near the shore.3
Conversely, if the medium is spatially uniform but changes slowly in time, and the
dispersion relation is of the form ! D !.k; t/, ! is not conserved along with the
wave propagation but k is conserved.

In the following, we assume that the medium is spatially uniform and temporally
stationary.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2.2 GROUP VELOCITY AS PROPAGATION VELOCITY OF ENERGY
As mentioned above, the group velocity vg is defined by vg D d!.k/=dk. On the other hand,
the velocity c defined by c D !=k represents the propagation velocity of the waveform and is
called the phase velocity. From the relation,

vg D
d!

dk
D
d.ck/

dk
D c C k

dc

dk
; (6.7)

in dispersive waves (i.e., dc=dk ¤ 0), vg ¤ c always. For example, in the case of deep water
gravity waves whose dispersion relation is given by ! D

p
gk, vg D c=2.

In the case of a linear wave traveling through a homogeneous stationary medium, there
is no exchange of energy between component waves with different wavenumber. Therefore, the
fact that the propagation velocity of k is vg.k/ means that the energy of the component wave
is also carried at velocity vg.k/. That is, the group velocity is not only the velocity at which the
wavenumber and frequency are transmitted, but also the velocity at which the energy is trans-
mitted. This is not a story limited to water surface waves, but applies to any wave phenomena as
well. In particular, for gravity waves, in Section 3.3 we calculated the energy density and energy
flux of a wave based on the linear sinusoidal wave solution, and confirmed that the energy prop-
agation velocity U defined as the ratio of the energy flux to the energy density certainly agrees
with the group velocity d!=dk.

In the first place, waves can exist and affect other objects only when the energy is trans-
mitted. In this sense, the group velocity, which is the velocity of energy propagation, has more
importance than the phase velocity, which is the velocity of waveform propagation. From (6.2),
an observer moving at a constant velocity V always sees k such that V D vg.k/ in front of
him/her. If there is no energy exchange between different wavenumber components, the en-
ergy spectrum does not change with time, and the amount of energy between wavenumber k1

and k2 (the shaded part in Fig. 6.2a) does not change with time. On the other hand, in the
3This property has already been mentioned in Section 3.2.5 and is used in Example 3.
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κ1 κ2 x2 x1 x

κ2 κ1

κ

tE(κ)

(a) (b)

Figure 6.2: Energy spectrum and wave propagation in physical space: (a) energy spectrum and
(b) the domain in the physical space where wave with k such that k1 < k < k2 is present.

physical space, after time t , the waves of wavenumber k1 and k2 propagate to the position of
x1 D vg.k1/t and x2 D vg.k2/t , respectively, hence the distance between the two increases in
proportion to t (see Fig. 6.2b). The energy of the wave between x1 and x2 in the physical space
is the energy contained between k1 and k2 of the energy spectrum. Since this fixed amount of
energy is distributed to the section x1 < x < x2 which becomes longer in proportion to t , the
amplitude of the wave there, which is proportional to the square root of the energy density,
decays in time as 1=

p
t .

The fact that energy propagates at the group velocity can also be understood from the
following consideration. As we saw in Section 3.3, energy is proportional to the square of the
amplitude within the linear theory, so the larger the amplitude, the larger the energy should be.
For example, when a group of waves are transmitted as shown in Fig. 6.3, the place where the
group of waves is located is obviously the place where energy is, so if you look at the moving of
the group of waves, it is possible to know the speed of energy propagation immediately.
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Figure 6.3: Propagation of a wave group.
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However, it is not possible to determine the propagation velocity of the energy associ-

ated with a wave with a wavenumber k from the motion of such an amplitude pattern. This
is because a monochromatic wavetrain consisting of only a certain wavenumber k is a uniform
wavetrain of constant amplitude, and even if energy is flowing along the wavetrain, it cannot be
seen as a movement of the amplitude pattern. Therefore, in order to discuss the energy propa-
gation in a uniform wavetrain, it is necessary to take a procedure as follows: we once introduce
a non-uniformity of the amplitude into the uniform wavetrain in some way, and establish the
energy propagation velocity as the propagation speed of the amplitude pattern, then reduce the
artificially introduced non-uniformity in order to return to the original uniform wavetrain.

More specifically, this procedure becomes as follows. For a uniform wavetrain � D

A cos.k0x � !0t / with wavenumber k0 and frequency !0 D !.k0/, consider a nonuniform
wavetrain consisting of superposition of two waves with slightly different wavenumber and fre-
quency

� D
1

2
A cosŒ.k0 C�k/x � .!0 C�!/t�C

1

2
A cosŒ.k0 ��k/x � .!0 ��!/t�; (6.8)

where �k is a very small wavenumber difference, and �! is the resultant small frequency dif-
ference. In the limit �k ! 0, (6.8) reduces to the original uniform wavetrain � D A cos.k0x �

!0t /. If we apply the trigonometric addition theorem, we can write (6.8) as

� D A cos .�k x ��! t/ cos .k0x � !0t / ; (6.9)

and the waveform it represents is as shown in Fig. 6.4.

x

η
 (
x

)

0 50 100 150 200

3

2

1

0

-1

-2

-3

Figure 6.4: Waveform composed of two wavetrains with close wavenumbers (A D 2, k0 D 1,
�k D 0:05).

Of the two cosines of (6.9), the latter cos.k0x � !0t / represents a uniform wavetrain with
wavenumber k0 and frequency !0. On the other hand, the wavenumber and frequency of the
former part A cos.�k x ��! t/ are �k and �!, respectively. Since �k � k0, �! � !0, the
change in time and space of this part is very slow compared to the cos behind, and plays a role
of specifying the local amplitude of cos.k0x � !0t /. This “amplitude part” travels at a speed of
�!=�k. The propagation of the amplitude pattern is nothing but the propagation of energy, so

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-027.jpg&w=144&h=78
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�!=�k is the propagation velocity of energy. Here, taking the limit of�k ! 0 to return to the

uniform wavetrain, from the definition of derivative, we obtain lim
�k!0

�!

�k
D
d!.k0/

dk
. Thus, it

can be understood that, in the uniform wavetrain of wavenumber k, the energy certainly moves
at the group velocity, even though it cannot be seen as a movement of the amplitude pattern.

The far field of linear dispersive waves, that is, the behavior after long-time and long-
distance propagation, can be analyzed more precisely by using Fourier analysis and a method
of asymptotic evaluation of integrals called the “method of stationary phase.” It is somewhat
difficult for the level of this book, so I will not touch it here. Readers who are interested should
refer to, for example, [11].

6.2.3 EVIDENCES OF ENERGY PROPAGATION AT GROUP VELOCITY
Let us show some evidences from familiar water wave phenomena that show that energy is
transmitted at the group velocity.

Waves Caused by a Stone
As shown in Section 3.3, the linear dispersion relation of water waves is given by

!2
D gk C

�k3

�
; (6.10)

considering both gravity and surface tension as restoring forces.Here, the water depth is assumed
to be sufficiently deep compared to the wavelength. Figure 6.5 shows the phase velocity c and
the group velocity vg as functions of wavelength �.D 2�=k/. Note that the group velocity has a
minimum value of 18 cm/s at a wavelength of 4.4 cm, and the phase velocity c for this wavelength
is 28 cm/s and is larger than vg .

When throwing a stone into the water, waves are generated and expand circularly, but
after a while the central part regains its quietness. This is not because the waves there have been
dissipated out but because vg has a non-zero minimum value of 18 cm/s, and energy cannot
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Figure 6.5: The phase and group velocities of capillary gravity waves.



6.2. GROUP VELOCITY 113
stay near the center. If there were no minimum value of vg and energy can be transmitted very
slowly without limit, the water surface near the center would keep rippling forever. A wave with
wavelength of about 4–5 cm, which corresponds to theminimum value of vg , should be observed
just outside the circular area where this quietness is restored. Also, if you look closely, these waves
appear from the inner quiescent area as if emerging from nothing. This is a consequence of the
fact that vg < c for these waves.

Difference in the Number of Waves Between Temporal and Spatial Waveforms
Suppose that a group of waves is generated by moving the wave maker installed at one end of
a long wave flume 10 times at a frequency ! as shown in Fig. 3.1. If we take a picture of the
instantaneous waveform (spatial waveform) of the water surface from the side of the flume, a
wave group consisting of 10 waves of wavelength � corresponding to ! through the dispersion
relation will be photographed. Assuming that a wave gauge is installed at a fixed point A down-
stream of the flume and that the temporal change (temporal waveform) of the height of the
free surface is recorded there. When the wave group generated by the wavemaker pass through
point A, how many waves will be recorded in the temporal waveform observed there? Since the
wave group consists of 10 waves, it is natural to expect that the temporal waveform contains 10
oscillations, but in fact about twice the oscillations are recorded.

The wave group on the left side (x � 10 m) of Fig. 6.6a shows the initial waveform given
at t D 0, while the wave group on the right side (x � 28 m) of the figure shows the spatial
waveform after 30 s obtained numerically based on the linearized system of equations of water
waves (3.28). The wavelength of the waves that make up the wave group is 1 m, and the group
velocity for this wavelength is vg D 0:62 m/s. Although a slight deformation is seen, the wave
group can be confirmed to propagate about 18 m in 30 s as expected from the value of vg .

On the other hand, Fig. 6.6b shows the temporal waveform obtained at point x D 20 m
for the same case, but the number of oscillations visible in the temporal waveform is clearly
larger than the number of waves included in the spatial waveform, and it seems that there are
about twice as many. Why does this happen? This seemingly strange phenomenon is also caused
by the fact that the waveform is transmitted at phase speed c, but the energy and a wave group
are transmitted at group velocity vg .

Suppose that the wave maker is oscillated n times to generate a wave group consisting of
n waves. If the wavelength of the waves that make up the wave group is �, the spatial length
L of the wave group is given by L D n�. Since the propagation velocity of a wave group is vg ,
the time � it takes for this wave group to pass through a spatially fixed point A is given by
� D L=vg D n�=vg . On the other hand, the wave period T corresponding to the wavelength �
is given by T D �=c, where c is the phase velocity corresponding to �. In the temporal waveform,
one oscillation is observed every time T elapses, so the number N of waves observed at the fixed
point A is

N D
�

T
D
n�

vg

�
�

c
D n �

c

vg

: (6.11)
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Figure 6.6:Difference in number of waves in the spatial waveform (a) and the temporal waveform
(b) (� D 1 m, vg D 0:62 m/s).

Therefore, the number N of waves in the temporal waveform is c=vg times the number n of
waves in the spatial waveform. In the case of deep water gravity waves whose dispersion relation
is given by ! D

p
gk, c=vg D 2, so the temporal waveform will contain twice as many waves as

the spatial waveform.4
Figure 6.7 shows the same numerical results as Fig. 6.6 in a different way. The horizontal

axis is x and the vertical axis is t . The value of t increases downward. The value of �.x; t/ at each
.x; t/ is shown in colors. Red corresponds to the place where � is largest, that is , the crest of the
waves, and blue corresponds to the place where � is minimum, that is, the trough of the waves.
In the green background corresponding to � D 0, it can be seen that the wave group moves
about 20 m from x D 10 to x D 30 in about 32 s. However, it can be seen that the red and blue
portions corresponding to the crests and troughs in the wave group move along lines closer to
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Figure 6.7: Propagation of a wave group (� D 1 m, vg D 0:62 m/s).

4In the case of the capillary waves whose dispersion relation is ! / k3=2, c=vg D 2=3, and conversely, the number of
waves in the temporal waveform is smaller than the number of waves in the spatial waveform.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-030.jpg&w=144&h=95
https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-031.jpg&w=180&h=93
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the horizontal compared with the lines going down to the right corresponding to the movement
of the wave group as a whole. “Closer to the horizontal” means that the spatial location changes
more in a same interval of time, that is, the speed is faster. If we look at the figure closely, we
can see that the waves emerge from the rear end of the wave group, and they moves in the wave
group at a speed (D phase speed) faster than the speed of the wave group (D group velocity),
and that they disappear at the front end of the group. The fact that the waves move at a higher
speed in the wave group than the wave group itself is the cause of the increase in the number of
waves in the temporal waveform.

Identifying the Storm that Caused the Swell
Imagine that the waves produced by a distant storm are transmitted across the ocean and are
arriving at the shore where you are now. A storm produces waves of various wavelengths simul-
taneously, but when the waves leave the area of the storm and propagate as swell, swells with
longer wavelengths (i.e., lower frequency) propagate faster according to the dispersion relation
! D

p
gk of gravity wave in deep water. Therefore, even if the swells are generated simultane-

ously by a same storm, the swell with a lower frequency reaches a distant coast faster. Suppose
that a swell with a period of 23 s had arrived four days ago on the beach where you are, but
then the period gradually became shorter, and today, a swell of period of 10 s is arriving. The
group velocity of the wave with a period of 23 s is about 18 m/s (about 1,500 km/day), and the
group velocity of the wave with a period of 10 s is about 7.8 m/s (about 670 km/day). As shown
in Fig. 6.8, these waves are traced back to the past at each group velocity, and by looking at
the point where the two intersect, it can be guessed that these waves were generated by a storm
which occurred 7 days before about 5,000 km from this coast. The direction of the storm can
also be inferred by observing the direction in which the swell comes from offshore where the
waves are not yet affected by refraction due to the bottom topography. If the distance, direction,
and the date have been estimated in this way, it is possible to identify the storm that caused the
swells that have been arriving at the coast for the last several days.
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Figure 6.8: Identification of the source of swells from change of period.
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Figure 6.9: Observation points used in Snodgrass et al. (1966) [10].

Using this principle, Snodgrass et al. (1966) [10] conducted a large-scale study to find
out where the long waves with periods of 10–20 s in the summertime Hawaii and California,
which are ideal for surfing, are coming from. Figure 6.9 shows the observation site they have
deployed which literally spans the North and South Pacific Ocean from Antarctic to Alaska.
Figure 6.10 is an example of the frequency spectrum that they observed at an observation point.
The horizontal axis is the date, and the vertical axis is the frequency in mHz. The intensity
distribution is indicated by contour lines as well as the grayscale. The darker parts represent the
part with larger spectral intensity. For example, focusing on the part surrounded by the dotted
line in the figure, on the morning of August 6, the wave of 45 mHz in frequency, that is a period
of 22 s, was prominent, but the frequency rose gradually with time, and it can be seen that on
the night of August 8, about 75 mHz, that is, swell with a period of 13 s became dominant. If
the time when the storm produced these swells is t0, the distance between the storm and the
observation point isL, and the time when the swell of frequency ! reaches the observation point
is t .!/, the dispersion relation !2

D gk of the deep water gravity wave gives

t .!/ D t0 C
L

vg.!/
D t0 C

2L

g
! �! ! D

g

2L
.t � t0/: (6.12)

In Fig. 6.10, the dominant frequencies appear to change linearly with time, which is con-
sistent with the behavior expected from (6.12). Each straight line indicating the temporal change
of the dominant frequency described in Fig. 6.10 corresponds to each storm. From (6.12), the
occurrence time t0 of the storm can be known from the intercept of the horizontal t axis of the
corresponding straight line, while the distance L to the storm can be known from the slope
(D g=2L) of the corresponding straight line. The smaller the slope of the straight line, the far-
ther the storm is from the observation point. For example, we can see that the series of swells

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-033.jpg&w=108&h=164
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Figure 6.10: Example of frequency spectrum obtained by Snodgrass et al. (1966) [10].

surrounded by dotted line in Fig. 6.10 were produced by a storm about 6,400 km away on August
1st.

Analysis of these observations collected by Snodgrass et al. revealed that the majority of
the swells reaching Hawaii and California in summer come from around the Antarctic continent
far beyond the equator. In the Southern Hemisphere, there is a western wind that winds around
the earth equivalent to the westerly wind in the Northern Hemisphere. But, since the Southern
Hemisphere has less land area, the wind is less likely to be decelerated than the Northern Hemi-
sphere, and the wind is stronger. Especially in winter (summer in the Northen Hemisphere),
strong cyclones develop and large storms often blow, and the area around 40ı and 50ı south are
called “roaring forties” and “furious fifties” and are feared by sailors. Although it might be disap-
pointing for Japanese surfers, these swells are blocked by Australia and the islands of Indonesia
and do not reach Japan.

6.3 NONLINEAR SCHRÖDINGER EQUATION:
EQUATION GOVERNING MODULATION

In the previous section, we showed that, starting from the conservation law of wave (6.1), that
the changes in wavenumber, frequency, and amplitude are transmitted at group velocity in a
quasi-monochromatic wavetrain. In this section, we will investigate the propagation of modu-
lation in a quasi-monochromatic wavetrain more systematically.
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6.3.1 CONTRIBUTION FROM DISPERSION: LINEAR SCHRÖDINGER
EQUATION

In order to describe the evolution of a quasi-monochromatic wavetrain, it is convenient to push
all deviations from the “carrier wave,” which is a complete uniform wavetrain with wavenumber
k0 and the corresponding frequency !0, into the “complex amplitude” as follows. First of all, let
us ignore nonlinearity and consider only the effect of dispersion.

Suppose that the initial value �.x; 0/ of the target physical quantity (e.g., free surface
displacement) �.x; t/ is represented by its Fourier transform as

�.x; 0/ D

Z 1

0

f .k/eikx dk C c.c.: (6.13)

Since �.x; t/ is assumed to be real, it can thus be written as a sum with a complex conjugate. In
this case, if the linear dispersion relation is ! D !.k/, then the solution �.x; t/ at any later time
t is given by

�.x; t/ D

Z 1

0

f .k/eiŒkx�!.k/t� dk C c.c.: (6.14)

Here, if we introduce the wavenumber deviation � D k � k0 and expand !.k/ around k0 in a
Taylor series as

!.k/ D !.k0 C �/ D !.k0/C !
0.k0/� C

1

2
!00.k0/�

2
C � � � ; (6.15)

then (6.14) can be written as5

�.x; t/ D ei.k0x�!0t/

Z 1

�1

f .k0 C �/ei�xe�iŒ!0
0

�C.1=2/!00
0

�2C��� �td� C c.c.: (6.16)

If we introduce the complex amplitude a.x; t/ by

a.x; t/ �

Z 1

�1

f .k0 C �/ei�xe�if!0
0

�C.1=2/!00
0

�2C���gt d�; (6.17)

and write a in polar form as a D jajei� , then (6.16) can be written as

�.x; t/ D a.x; t/ei.k0x�!0t/
C c.c. D 2jaj cos.k0x � !0t C �/: (6.18)

Here, ei.k0x�!0t/ represents a uniform wavetrain corresponding to the carrier wave, and all the
information on amplitude and wavenumber modulation is included in a.x; t/Thus, a wave field

5Let me say a few words about making the range of integration of � to .�1; 1/. The object of this section is a quasi-
monochromatic wave whose wavenumber spectrum has energy only in a narrow range around k0. Assuming that the width
of the wavenumber spectrum is �k, f .k/ in (6.14) has a nonzero value only in the interval of k0 � �k � k � k0 C �k,
which corresponds to ��k � � � �k. In the integration with respect to � in (6.16), f .k/ is substantially zero in the part
beyond the interval ��k � � � �k, and it does not matter if we extend the range of integration to �1 � � � 1 for
convenience.
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that has a spectrum concentrated in a narrow range around wavenumber k0 can be treated as a
single wavetrain (6.18) by introducing the complex amplitude a.x; t/.

From the definition (6.17) of a,

@a

@t
D �i

Z 1

�1

�
!0

0� C
1

2
!00

0�
2
C � � �

�
f .k0 C �/ ef��� g d�; (6.19a)

@a

@x
D i

Z 1

�1

�f .k0 C �/ ef��� g d�; (6.19b)

@2a

@x2
D �

Z 1

�1

�2f .k0 C �/ ef��� g d�; (6.19c)

then, in an approximation that ignores O.�3/, a.x; t/ satisfies

i

�
@a

@t
C !0

0

@a

@x

�
C
1

2
!00

0

@2a

@x2
D 0: (6.20)

This equation is called the linear Schrödinger equation. As you can see from the above deriva-
tion process, this argument is not limited to water wave problem but holds generally.

In order to understand the meaning of (6.20) more clearly, let us check the magnitude of
each term. Let A and�k be the typical magnitudes of the amplitude a and the spectrum width,
respectively. Because we ignore nonlinear effects here, the amplitude must be small enough.
However, a itself is an amount with a dimension, and it is meaningless to argue smallness
against it.6 In the case of the deep water gravity waves adopted as an example here, it is the
non-dimensional amplitude Ak0 that must be small as discussed in Section 3.4. It is also im-
portant in this section that the spectrum width is narrow, but �k is also a quantity with a
dimension of [1/length], and the smallness of itself is meaningless. A small dimensionless pa-
rameter that means “narrow band” is�k=k0, that is, the spectrum width�k normalized by the
carrier wavenumber k0. For example, we expanded !.k/ in Taylor series around k0 and ignored
the third and higher order terms in (6.15). For this truncation to be rational, it is naturally re-
quired that the second term is much smaller than the first term, and the third term is in turn
much smaller than the second term, and so on. If we estimate the magnitudes of �, !0, !00 by
�k, !0=k0, !0=k

2
0 , respectively, the ratio of the second term to the first term, the ratio of the

third term to the second term, and the ratio of other subsequent two terms of (6.15) is always
O.�k=k0/.

With these things in mind, and from (6.19), the order of magnitude of at , ax , axx can be
estimated as

a � A; at � !0

�k

k0

A; ax � �kA; axx � .�k/
2A: (6.21)

6The magnitude of a quantity with a dimension can vary widely with the unit system. For example, even if the same
length of 1 m, it becomes a small value of 0.001 when measured in km, while it becomes a large value of 1000 when measured
in mm. It is only for non-dimensional quantities that can rationally argue if it is large or small.
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Then the order of magnitude of each term of (6.20) can be estimated as follows:

at � !0

�
�k

k0

�
A; !0

0ax � !0

�
�k

k0

�
A; !00

0axx � !0

�
�k

k0

�2

A; (6.22)

and we can see that the first two terms have the same order of magnitude, while the third term
is relatively smaller by .�k=k0/. Therefore, in the case of extremely narrow band, i.e., �k

k0
� 1,

it is conceivable to ignore the third term and consider only the first two terms. This part means
that a.x; t/ translates without change of form at the group velocity !0

0 corresponding to the
carrier wavenumber k0, which is exactly what we discussed in Section 6.2.

Various temporal and spatial scales are involved in the description of the modulated wave-
train. First there is a time scale T0 and a space scale L0 that characterize the carrier wave, which
of course are of the order of the carrier period and the wavelength, so

T0 �
1

!0

; L0 �
1

k0

: (6.23)

Next, there is a time scale T1 and a space scale L1 of modulation, that is, the scale of time and
space with which we can notice that the carrier that looks like a uniform wavetrain when viewed
locally with scales T0 and L0 is actually modulated slowly. These can be evaluated by a=at and
a=ax , respectively. According to the order estimate of at , ax above,

T1 �
a

at

�
1

!0

k0

�k
�

�
k0

�k

�
T0; L1 �

a

ax

�
1

k0

k0

�k
�

�
k0

�k

�
L0: (6.24)

Therefore, the temporal and spatial lengths T1, L1 required to see the modulation of the wave-
train becomes longer than the scales of the carrier T0, L0 as �k

k0
becomes smaller. The third term

of (6.20) represents the deviation from the pure translation of a.x; t/ with carrier group velocity
!0

0 represented by the first two terms, that is, it expresses the net deformation of a.x; t/. Since
this term is smaller by .�k=k0/, the time and space scales T2, L2 in which the deformation of
the modulation waveform caused by this term becomes prominent become ever longer and are
given as

T2 �

�
k0

�k

�2

T0; L2 �

�
k0

�k

�2

L0: (6.25)

We showed in Fig. 6.6 that the results of numerical simulation of wave group propagation. If we
look at the figure carefully, we can notice that after 30 s the shape of the envelope of the wave
group is somewhat gentler and wider than the initial one. This kind of deformation is exactly the
effect of this third term. As can be seen from the coefficient !00

0 , the third term is a term due to
the difference in group velocity between the wavenumbers that compose the narrow spectrum,
and hence it is called group velocity dispersion.
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6.3.2 CONTRIBUTION FROM NONLINEARITY: MODE GENERATION
AND RESONANCE

In the discussion so far, we have ignored the nonlinear effect assuming that the amplitude is
extremely small, and have investigated only the dispersive effect that arises from having a nar-
row but finite band width. In the following, conversely, the effect of dispersion is neglected
by assuming that the spectrum is a line spectrum with no width, and instead the influence of
nonlinearity on the evolution of complex amplitude a.x; t/ is considered. First, we will study as
preparation two things: “mode generation” by nonlinear interaction and “resonant interaction.”

Mode Generation by Nonlinear Interaction
Suppose that �.x; t/ is composed of two component waves as

�.x; t/ D
�
a1ei�1 C c.c.

�
C

�
a2ei�2 C c.c.

�
; �i D kix � !i t .i D 1; 2/ (6.26)

at its lowest-order O.a/. If the governing equation of the system or its boundary conditions
contains a second-order nonlinear term in �, as it can be seen from

�2
D

n
a2

1e2i�1 C a2
2e2i�2 C a1a2ei.�1C�2/

C a1a
�
2ei.�1��2/

o
C c.c.C 2

�
ja1j

2
C ja2j

2
�
; (6.27)

wave components with new wavenumber and frequency combinations made from the sum or
difference of wavenumber and frequency combination .k1; !1/, .k2; !2/ such as .2k1; 2!1/,
.2k2; 2!2/, .k1 ˙ k2; !1 ˙ !2/ are automatically generated.7 Here, a� represents the complex
conjugate of a. If we write this schematically,

� D

(
a1 ei�1 C c.c.
a2 ei�2 C c.c.

H) �2
D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

a2
1 e2i�1 C c.c.
a2

2 e2i�2 C c.c.
a1a2 ei.�1C�2/ C c.c.
a1a

�
2 ei.�1��2/ C c.c.

ja1j
2; ja2j

2:

(6.28)

7However, it may not be appropriate to call these oscillating components that are newly generated by nonlinearity “waves”
just because they have the form a ei.kx�!t/. Because, as studied so far, in order for the sinusoidal wave a ei.kx�!t/ to be
the “true wave” that the system allows, k and ! need to satisfy the dispersion relation required by the governing equations
(& boundary condition) of the system. In the case considered here, .k1; !1/, .k2; !2/ of the lowest order components are
originally supposed to satisfy this dispersion relation. But there is no guarantee at all that the combinations .2k1; 2!1/,
.2k2; 2!2/, .k1 ˙ k2; !1 ˙ !2/ that are generated due to nonlinearity also satisfy the dispersion relation. If the system is
truly dispersive (i.e., the dispersion relation is not ! D c0k), it is rather exceptional that they satisfy the dispersion relation.
This point will be discussed again in the next chapter.
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If �.x; t/ is composed of only a single monochromatic wavetrain in the lowest O.a/, then

components such as

� D a ei�
C c.c.; (6.29a)

�2
D

�
a2e2i�

C c.c.
�
C 2jaj2; (6.29b)

�3
D

�
a3e3i�

C 3jaj2aei�
�
C c.c. (6.29c)

will be generated due to nonlinear interaction with itself. Here, the fact that a component with
the same time-space dependence ei� as the original wave is excited at the third order O.a3/ has
an important implication as discussed below.

Resonant Interaction
When an oscillatory system with a natural frequency !0 like a spring or a pendulum is subjected
to an oscillatory external force with a frequency !, its response y.t/ is governed by the ordinary
differential equation

d2y

dt2
C !2

0 y D F cos!t (6.30)

under the linear approximation. As we discussed in Section 4.3.2, when ! D !0, resonance
occurs. In this case, the general solution of (6.30) is given by

y.t/ D A cos.!0t C �/C
F

2!0

t sin!0t; (6.31)

and the amplitude of the inhomogeneous part (second term) increases indefinitely in proportion
to time. As an analogy of this phenomenon, resonant interference can also occur if a wavelike
external force f / ei.kx�!t/ acts on a wave represented by a ei.k0x�!0t/. However, unlike oscil-
lations, waves are oscillatory not only in time but also in space, so in order to realize a resonant
state, the wavenumber must match as well as the frequency, i.e., k D k0, ! D !0.

If the basic wave field O.a/ consists of a monochromatic wave a ei� C c.c. .� D k0x �

!0t /, the nonlinear interaction with itself produces a component of jaj2a ei� at O.a3/ as (6.29)
shows.This component is in a relationship of resonance with the fundamental wave, so it acts as a
resonant external force on the fundamental wave. (6.31) indicates that the rate of change da=dt
of the amplitude a of an oscillatory system subjected to a resonant external force is proportional
to the magnitude F of the external force. By analogy, it can be inferred that a term proportional
to jaj2a would appear as a nonlinear effect in the equation governing the temporal change of
the complex amplitude a.x; t/. If the dimensionless parameter representing the smallness of the
amplitude is denoted as �, then the magnitude of this term is O.�3/, so the effect of nonlinear
self-interaction is expected to appear prominently on a space-time scale of T0=�

2 and L0=�
2.
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6.3.3 NONLINEAR SCHRÖDINGER EQUATION
As we saw previously, the deformation of the complex amplitude a.x; t/ brought about by the
effect of group velocity dispersion becomes noticeable on a time scale of T0.k0=�k/

2. On the
other hand, as seen above, the influence of nonlinearity on a.x; t/ appears through a term of
the form jaj2a, and the effect is expected to become prominent on a time scale of T0=.Ak0/

2.
As in the case of the Burgers equation and the KdV equation, when several different effects
coexist, interesting and important phenomena appear in the space-time scale where they have
the same magnitude and compete with each other. In the present case, this corresponds to the
situation where .�k=k0/ � .Ak0/, i.e., the small parameter �k=k0 expressing the narrowness
of the spectrum (i.e., weakness of group velocity dispersion) and the small parameter Ak0 ex-
pressing the smallness of the amplitude (i.e., weakness of nonlinearity) are equally small. If we
derive an equation which governs the time-space evolution of the complex amplitude from the
original set of governing equations for various types of wave phenomena in different physical
systems such as fluids, plasmas, etc., we generally obtain an equation of the following form, as
expected from the above intuitive argument,

i
�
at C !

0
0ax

�
C p axx D q jaj

2a: (6.32)

Herep, q are both real numbers, andp is always given by!00.k0/=2, as can be seen from the linear
Schrödinger equation (6.20). This equation is called the nonlinear Schrödinger equation, and
was first derived for deep-water surface gravity waves by Zakharov (1968) [13]. In the following,
we call itNLSequation for short.We also eliminate the second term by introducing a coordinate
system moving at a group velocity !0.k0/ and represent it as

iat C p axx D q jaj
2a: (6.33)

Of course, the NLS equation should not be derived by intuition as above, but it should
be derived more systematically using the perturbation method starting from the basic equa-
tions which govern the physical system. However, for the case of waver waves, it requires quite
complicated calculations to actually derive the NLS equation from the original set of govern-
ing equation. Then in the following we will show specifically the process of derivation of the
NLS equation for an imaginary system which is governed by the KdV equation by using the
multiple-scale method.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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EXAMPLE 1: DERIVATION OF THE NLS EQUATION BY MULTIPLE SCALE
METHOD
In a system governed by the KdV equation8

ut C c0ux C ˇuxxx D �˛uux; (6.34)

derive anNLS equation that describes the space-time evolution of the complex amplitude a.x; t/
of the quasi-monochromatic wavetrain with carrier wavenumber k0 and frequency !0.

[Answer]
Let � be a small dimensionless parameter that indicates the smallness of the amplitude. As

discussed above, it is reasonable to assume that the small quantity representing the narrowness
of the spectrum �k=k0 is comparable to the smallness of nonlinearity, and therefore � at the
same time represents the smallness of �k=k0. As described above, the description of a quasi-
monochromatic wavetrain includes various time and space scales, such as those of the carrier
wave itself, those in which the modulation is visible, and those in which the effects of group
velocity dispersion and the nonlinear self-interaction are visible, and so on. To express such
phenomena with various scales well, it is convenient to use the perturbation method called the
multiple scalemethod introduced inChapter 4. In thismethod,multiple time and space variables
are introduced as shown below.

Let x0, t0 be variables suitable for viewing the carrier wave itself. This is a space-time
variables originally present, so

x0 D x; t0 D t: (6.35)

If we look at the modulation of the wavetrain by using x0, t0, these variable need to change to
a very large value of around 1=�. Therefore we introduce new slow variables by

x1 D �x0; t1 D �t0: (6.36)

Similarly, for the effects of group dispersion and nonlinear self-interaction to become visible,
it is necessary for x0, t0 to become even larger values of O.1=�2/. So we also introduce new
variables

x2 D �
2x0; t2 D �

2t0; (6.37)

to handle such long distance and time appropriately. If you want to consider higher-order non-
linear effects and dispersion effects, you may introduce variables xn, tn .n � 3/ that change more
slowly in a similar manner if necessary.

8As discussed in Chapter 5, the KdV equation is an important nonlinear wave equation that can be derived in many
physical systems, taking into account both weak nonlinearity and weak dispersion. However, in this example, we will forget
all the physical meaning of the KdV equation and the premise of its derivation, and will use it as a starting point just to show
the typical derivation process of the NLS equation.
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The dependent variable u.x; t/ is approximated by a series expansion in �, and each term

is considered to be functions of xn, tn introduced above. That is,

u.x; t/ D
X
j D1

�juj D �u1 C �
2u2 C � � � ; uj D uj .x0; t0; x1; t1; � � � /; .j D 1; 2; : : :/:

(6.38)
As the independent variables x, t are expanded to several variables, differential operations are
also expanded as

@

@x
D

@

@x0

@x0

@x
C

@

@x1

@x1

@x
C
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@x2

@x2

@x
C � � � D

@

@x0

C �
@

@x1

C �2 @

@x2

C � � � ; (6.39a)

@

@t
D

@

@t0

@t0

@t
C

@

@t1

@t1

@t
C

@

@t2

@t2

@t
C � � � D

@

@t0
C �

@

@t1
C �2 @

@t2
C � � � : (6.39b)

Due to this property, this multiple scale method is also called the derivative expansionmethod.

Substituting (6.38) and (6.39) into (6.34), organizing according to the power of �, and
solving from the lower order. First, the problem with O.�/ is as follows:

L0Œu1� D 0; L0 �
@

@t0
C c0

@

@x0

C ˇ
@3

@x3
0

: (6.40)

Since we are discussing here the modulation of a nearly monochromatic wave, the monochro-
matic carrier wave should be adopted as the solution of the lowest order O.�/, so

u1 D a.x1; t1; : : :/ei�
C c.c.; � D k0x0 � !0t0; D.k0; !0/ D !0 � ck0 C ˇk

3
0 D 0; (6.41)

where k0 and !0 satisfy the dispersion relation !.k/ D c0k � ˇk
3
0 required by the operator L0.

D.k; !/ is a polynomial of k and ! such that the following equation holds when L0 operates on
ei.kx0�!t0/,

L0

h
ei.kx0�!t0/

i
D �iD.k; !/ ei.kx0�!t0/: (6.42)

Equation (6.40) is nothing but the linearized version of (6.34) except that x and t are
written as x0 and t0, and (6.41) is its sinusoidal wave solution. However, it should be noted that
the amplitude a is allowed to depend on slow variables such as x1 and t1. This dependence of a
on the slow scales represents the modulation of wavetrain.

The problem of O.�2/ is given as follows:

L0Œu2�C

�
@

@t1
C c0

@

@x1

C 3ˇ
@3

@x2
0@x1

�
u1 D �˛u1

@u1

@x0

: (6.43)

Substituting the solution (6.41) of O.�/ into this yields

L0Œu2� D �

�
@a

@t1
C .c0 � 3ˇk

2
0/
@a

@x1

�
ei�
C c:c: � i˛k0a

2e2i�
C c:c:: (6.44)
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Here, f� � � gei� on the right side is a solution of the corresponding homogeneous problem
L0Œu� D 0. This is exactly the same situation when a resonance occurs. Therefore, if this term
is present, a secular term will appear in u2 which grows infinitely in proportion to � , and the
perturbation expansion will break down in a short time. Then as a non-secular condition, we
obtain

@a

@t1
C
�
c0 � 3ˇk

2
0

� @a
@x1

D 0: (6.45)

Note here that the coefficient .c0 � 3ˇk
2
0/ of @a=@x1 is equal to !0.k0/, i.e., the group velocity

of the carrier wave. You might feel like we are requesting something self-serving, but this non-
secular condition (6.45) automatically gives the correct result that the complex amplitude a
propagates at the carrier group velocity. Also, as a result of this, we obtain

u2 D
˛k0

D.2k0; 2!0/
a2e2i�

C c:c:C �.x1; : : : ; t1; : : :/ (6.46)

as the solution to the problem of (6.43). Here, the part e2i� is a particular solution of the in-
homogeneous problem, and � is a “DC component” (real number) equivalent to a constant of
integration.

The next O.�3/ problem becomes as follows:

L0Œu3� D�

�
@

@t1
C c0

@

@x1

C 3ˇ
@3

@x2
0@x1

�
u2

�

�
@

@t2
C c

@

@x2

C 3ˇ
@3

@x0@x
2
1

C 3ˇ
@3

@x2
0@x2

�
u1

� ˛

�
u1

@u2

@x0

C u2

@u1

@x0

C u1

@u1

@x1

�
: (6.47)

Substituting (6.41) and (6.46) for u1 and u2, respectively, brings about on the right-hand side a
term proportional to ei� and a constant term that would cause secular terms in u3 as in the case
ofO.�2/. If we require that the coefficients of these terms be both zero to prevent the breakdown
of the perturbation expansion, we obtain

const. term: @�

@t1
C c0

@�

@x1

C ˛
@jaj2

@x1

D 0; (6.48a)

ei� term : i

�
@a

@t2
C !0

0

@a

@x2

�
C
1

2
!00

0

@2a

@x2
1

D

�
˛2k2

0

D.2k0; 2!0/
jaj2 C ˛k0�

�
a: (6.48b)

As (6.48a) shows, the DC component � is produced by spatial modulation of jaj. Since a
just translates at the group velocity !0

0 on the .x1; t1/ space-time scale as shown by (6.45), it is
reasonable to assume that � produced by a has the same .x1; t1/ dependencies as a. Then from
(6.48a)

� D ˛jaj2=.!0
0 � c0/; (6.49)
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and substituting this into (6.48b) gives

i

�
@a

@t2
C !0

0

@a

@x2

�
C
1

2
!00

0

@2a

@x2
1

D

�
˛2k2

0

D.2k0; 2!0/
C

˛2k0

!0
0 � c0

�
jaj2a: (6.50)

By adding �2 times of (6.45) and �3 times of (6.50), and using the relationship (6.45) to
restore the original variable x and t , and at the same time, replacing �a with a in order to let a
be the amplitude of u, we finally obtain

i

�
@a

@t
C !0

0

@a

@x

�
C
1

2
!00

0

@2a

@x2
D

�
˛2k2

0

D.2k0; 2!0/
C

˛2k0

!0
0 � c0

�
jaj2a; (6.51)

as a condition that the secular term does not occur up to O.�3/. This is the NLS equation
that describes the space-time evolution of the complex amplitude of a quasi-monochromatic
wavetrain in a system governed by the KdV equation (6.34).9 |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As can be seen from the example above, it is not so easy to derive the NLS equation,

even if the governing equation is such a simple one like (6.34). Deriving the NLS equation for
the surface gravity waves starting from the far more complex basic equations (3.28) of water
waves requires considerable mathematical ability and patience. This task has been completed by
Hasimoto and Ono (1972) [5]. After tedious calculations, the equation they finally obtained is
the NLS equation of the form (6.33) itself, and its coefficients p and q are given by

p D
1

2
!00

0 D �
g

8k0�!0

h˚
� � k0h.1 � �

2/
	2
C 4k2

0h
2�2.1 � �2/

i
; (6.52a)

q D
g2k4

0

2!3
0

�
1

!0
0 � gh

˚
4c2

0 C 4.1 � �
2/c0!

0
0 C gh.1 � �

2/2
	
C

1

2�2
.9 � 10�2

C 9�4/

�
;

(6.52b)

where h is the water depth, k0 is the carrier wavenumber, !0 is the carrier frequency determined
from k0 by the linear dispersion relation ! D

p
gktanh.kh/, c0 .D !0=k0/ is the phase velocity

of the carrier, !0
0 is the group velocity of the carrier, and � D tanh.k0h/. The coefficient p is

always negative for any combination of k0 and h, while the coefficient q changes its sign, and is
positive when k0h > 1:363 and negative when k0h < 1:363. This change of sign at some specific
value of k0h has very important implications for the stability of the wavetrain, as shown in
Section 6.4.

9According to (6.51), the coefficient of the nonlinear term diverges when D.2k0; 2!0/ D 0 and !0
0 � c0 D 0, and this

analysis breaks down. In fact, the former corresponds to the situation called “harmonic resonance” and the latter corresponds
to the situation called “long wave short wave resonance.” We will treat these subjects in Section 7.4 of the next chapter.
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6.3.4 ENVELOPE SOLITON SOLUTION
Various analytical solutions are known for the NLS equation (6.33), and the most famous of
them is the envelope soliton solution

a.x; t/ D a0sech
�r
�q

2p
a0x

�
exp

�
�
i

2
qa2

0t

�
: (a0: arbitrary real number). (6.53)

This represents a pulse-like wave group as shown in Fig. 6.11a. The fine waves inside represents
the carrier wave, and the solution a.x; t/ of the NLS equation defines the shape of its envelope.

(a) (b)

Figure 6.11: Envelope soliton (a) and envelope hole (b).

Like the soliton solution (5.12) of the KdV equation, the envelope soliton of the NLS
equation is narrower as the amplitude is larger. However, in the KdV soliton, the width ı is
about 1=

p
a, whereas the width of the envelope soliton of the NLS is about 1=a. KdV soliton

was realized on the balance between the nonlinear term uux and the dispersion term uxxx .
When the representative amplitude and width of the wave are a and ı, respectively, the order
of these terms are estimated as uux � O.a

2=ı/ and uxxx � O.a=ı
3/, and hence it is required

that ı � 1=
p
a. On the other hand, the envelope soliton of the NLS equation is built on the

balance of the group velocity dispersion axx and the nonlinearity jaj2a. The magnitudes of these
terms are estimated as O.a=ı2/ and O.a3/, respectively, so it is necessary that ı � 1=a for them
to balance with each other. As the expression in its square root shows, the envelope soliton
solution (6.53) exists only when the coefficients p and q have opposite sign (pq < 0).10

The NLS equation, like the KdV equation, is shown to be one of the so-called “soliton
equations” that can be solved by the inverse scattering method [14]. Therefore, the envelope
soliton of the NLS is also a “soliton” as its name suggests, and it has been confirmed in actual
water tank experiments that it exhibits particle-like stability against interactions [12].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXAMPLE 2: CHECKING THE ENVELOPE SOLITON SOLUTION
Confirm that the envelope soliton solution (6.53) satisfies the NLS equation (6.33).

10Conversely, in the case of pq > 0, there exists a solution in which an isolated depression is transmitted in the uniform
wavetrain as that shown in Fig. 6.11b, which cannot exist when pq < 0. This is called the envelop hole or dark soliton. In
this respect, the envelope soliton is also called the bright soliton.

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-035.jpg&w=180&h=55
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[Answer]

First, let y.x/ D sech x .D 1=cosh x/. Then, from

.sech x/0 D �tanh x sech x; .sech x/00 D sech x � 2sech3 x; (6.54)

y.x/ is known to satisfy the differential equation

y00
D y � 2y3: (6.55)

If we write the envelope soliton (6.53) as

a.x; t/ D a0 sech � E; � D

r
�q

2p
a0x; E D exp

�
�
i

2
qa2

0 t

�
; (6.56)

then

iat D ia0 sech � E
�
�
i

2
qa2

0

�
D
1

2
qa3

0 sech � E; (6.57a)
and

paxx D pa0

d2sech�
d�2

�
d�

dx

�2

E D pa0.sech � � 2sech3�/

�
�q

2p
a2

0

�
E

D �
1

2
qa3

0.sech� � 2sech3�/E: (6.57b)

Then,
iat C paxx D qa

3
0sech3� E D qjaj2a; (6.58)

and the NLS equation certainly holds.
|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The NLS equation is invariant to the Galilean transform

Qx D x � V t; Qt D t; Qa D a exp
�
�i

V

2p
x C i

V 2

4p
t

�
; (6.59)

and
iat C paxx D qjaj

2a  ! i QaQt C p Qa Qx Qx D qj Qaj
2
Qa (6.60)

holds. This invariance physically corresponds to the indeterminacy of the carrier wavenumber
k0. The wavetrain we are dealing with has a spectral width of about �k � �k0, and it is our
disposal to choose which wavenumber is the carrier wavenumber. The seemingly complex phase
factor ei.��� / in (6.59) corresponds to replacing the current carrier wavenumber k0 with a new
carrier wavenumber Qk0 for which the group velocity differs by V (i.e., Qk0 � k0 D V=2p). Using
(6.59), we can easily obtain an envelope soliton propagating at an arbitrary velocity V from a
stationary envelope soliton (6.53). However, remembering the physical background of the NLS
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equation and the assumptions made in the process of derivation, V must be a small amount
of O.�/, however arbitrary it may be. It should be noted that the NLS equation (6.33) is also
invariant under the transformation

t ! �2t; x ! �x; a! ��1a .� ¤ 0/: (6.61)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EXAMPLE 3: CHECKING GALILEAN TRANSFORMATION INVARIANCE
Confirm that, if a.x; t/ is a solution of the NLS equation (6.33), then Qa.x; t/ given by

Qa.x; t/ D a.x � V t; t/ exp
�
i
V

2p
x � i

V 2

4p
t

�
(6.62)

is also a solution of (6.33).

[Answer]
Let

QE � exp
�
i
V

2p
x � i

V 2

4p
t

�
: (6.63)

Then

Qat D

�
ax.�V /C at � i

V 2

4p
a

�
QE; (6.64a)

Qax D

�
ax C i

V

2p
a

�
QE; (6.64b)

and
Qaxx D

�
axx C i

V

2p
ax C

�
ax C i

V

2p
a

��
i
V

2p

��
QE; (6.64c)

and from these it can be seen that

i Qat C p Qaxx D � � � D .iat C paxx/ QE D qjaj
2a QE D qj Qaj2 Qa: (6.65)

|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Similar to the KdV soliton, the width of the envelope soliton of the NLS is determined

by the amplitude as (6.53) indicates. However, unlike the KdV soliton which becomes faster as
the amplitude increases, there is no special relationship between the propagation velocity and
the amplitude of the envelope soliton. This independence between amplitude and velocity can
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also be seen from the above Galilean invariance.11 Reflecting this, the NLS equation allows a
new type of solution in which multiple solitons with different amplitudes propagate at the same
speed without separation, which can be called a “bound state of solitons.” Such solutions are
called breathers because they propagate with periodic oscillation (see, for example, [9]).

As a special case of the breather solution, the following solution called “Peregrine breather”
is especially well known [8],

u.x; t/ D a0 exp
�
�iqa2

0t
� "
�1C

4.1 � 2iqa2
0t /

1 � 2q
p
a2

0x
2 C 4q2a4

0t
2

#
: (6.66)

This solution approaches a uniformwavetrain in both the limit x !˙1 and the limit t !˙1,
and a wave group appears around .x; t/ D .0; 0/ only once which has three times the amplitude of
the uniformwavetrain. In recent years, a phenomenon in which an unusually high wave suddenly
appears as if it has come from nowhere in a relatively calm ocean has attracted attention, and
it is called freak waves or rogue waves. Some researchers consider the breather solution of the
NLS equation to be a simple and effective model for such phenomena of rogue waves (see, for
example, [2] and [3]).

When you drain the water of the bathtub, you can see the water flows out with the form
of a thin vortex. In the fluid dynamics, the limiting state where the vorticity is concentrated
within a thin string with zero thickness is called a “vortex filament.” Intuitively, it is a pattern of
motion that has nothing to do with wave phenomena, but it has been shown that the motion of
this vortex filament can also be reduced to the NLS equation under certain approximation [4].
Therefore, there is a pattern of motion, sometimes called “Hasimoto soliton,” in which a twist
of the vortex filament propagates stably along the filament which corresponds to the envelope
soliton solution of the NLS equation.

6.4 MODULATIONAL INSTABILITY
We learned in the previous section that the modulation of a quasi-monochromatic wavetrain is
governed by the nonlinear Schrödinger equation. Using this fact, we can discuss the stability of
a uniform wavetrain to modulation as shown next.

11The NLS equation can be solved by the inverse scattering method. In other words, there exits a linear eigenvalue problem
such that the solution a.x; t/ of the NLS equation is included in the coefficient and that its discrete eigenvalues remain con-
stant when a.x; t/ evolves according to the NLS equation. And as with the KdV equation, one envelope soliton is associated
with one discrete eigenvalue of the problem, and this invariance of discrete eigenvalue is the origin of outstanding stability
and self-holding ability of envelope soliton of the NLS equation. However, unlike the KdV equation, the linear eigenvalue
problem corresponding to the NLS equation is not self-adjoint, and the eigenvalues generally take complex numbers. Accord-
ing to the inverse scattering method for the NLS equation, the real part of each discrete eigenvalue specifies the speed of the
corresponding soliton, while the imaginary part specifies its amplitude. For more detail, refer to [14].
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6.4.1 STOKES WAVES AND ITS STABILITY
As mentioned in Section 3.4, G. G. Stokes first introduced nonlinear effects to surface gravity
waves about the mid 19th century. He derived the following approximate solution, now called
the Stokes wave, for the surface displacement �.x; t/ of a wavetrain propagating at a constant
velocity without changing its shape in water of infinite depth:

�.x; t/ D A cos � C 1

2
A2k cos 2� CO.A3/; � � kx � !t; ! D

p
gk

�
1C

1

2
A2k2

�
:

(6.67)
A particularly important point of this solution is that the frequency ! depends not only on the
wavenumber k but also on the amplitudeA, and waves of larger amplitudes propagate faster even
though the wavelength is the same. Since Stokes, research on Stokes waves has been actively car-
ried out, for example, to carry out the Stokes-like amplitude expansion to higher orders to obtain
approximate solutions with wider effective range, or to mathematically discuss the convergence
of the Stokes expansion itself, etc.

However, whether it is a solution that satisfies the governing equation for water waves
and whether it can actually be observed on the ocean surface or in a wave tank experiment are
completely different stories. The property of stability is related there. For example, let us think
about laying a hemispherical bowl with its face down and putting a small ball at its top as shown
in Fig. 6.12a. The top of the bowl corresponds to the extremum (local maximum) of the potential
energy, and the situation where the ball rests there is an equilibrium that satisfies the balance
of forces. However, the ball will fall off the hemisphere with a slightest deviation from the top,
and it is almost impossible to actually realize such a situation. On the other hand, the bottom
of the bowl facing upward as shown in Fig. 6.12b is also an extremum (local minimum) of the
potential energy, so the balance of forces is established there and the ball can stay there. In this
case, even if the ball slightly deviates from the bottom for some reason, a force automatically
works to return the ball to the bottom, and the ball does not deviate greatly from the point of
balance. As in the former case, if the deviation increases rapidly when a small deviation occurs
for some reason, the equilibrium is said to be unstable, while if the deviation does not increase in
time as in the latter case, it is said to be stable. There is no difference that they are both solutions
of the equation of force balance, but the former with no stability is not actually realized.

(a) (b)

Figure 6.12: The concept of stable and unstable situations: (a) unstable and (b) stable.



6.4. MODULATIONAL INSTABILITY 133
It has been known since Stokes that the Stokes wave, that is, a periodic wavetrain consid-

ering nonlinearity exits as an approximate solution that accurately satisfies the basic equations
of water waves. However, no attention seems to have been given to its stability for a long time.
However, finally in 1967, over 100 years since Stokes, Benjamin, and Feir for the first time
showed both theoretically and experimentally that the Stokes wave is unstable against some
kind of small perturbation, and it is impossible to generate a beautifully uniform wavetrain cor-
responding to the Stokes wave in a wave flume no matter how hard one tries [1].

6.4.2 STABILITY ANALYSIS BASED ON NLS EQUATION
The analysis by Benjamin and Feir is based on in-depth physical insights into the mechanisms
that causes instability, but the method of analysis seems somewhat less clear from today’s point
of view. As shown below, the same results as them can be derived more easily by starting from
the NLS equation that they did not know at that time. First, note that the solution of (6.33)
which does not depend on x, that is,

a.x; t/ D a0 e�iqa2
0

t ; (6.68)

corresponds to the Stokes wave (6.67). Here, a0 can always be made a real positive number by
shifting the origin of t , so we will assume it that way. According to the relation (6.18), �.x; t/
corresponding to a.x; t/ of (6.68) is given by

�.x; t/ D a.x; t/ei.k0x�!0t/
C c:c: D 2a0 cos

�
k0x � .!0 C qa

2
0/t
�
: (6.69)

This represents a uniform wavetrain whose frequency is modified from the value !0 of the linear
theory by an amount qa2

0 proportional to the square of the amplitude.
The coefficients p and q of the NLS equation for surface gravity waves shown in (6.52)

becomes
p D �

!0

8k2
0

; q D 2k2
0!0; (6.70)

at the limit of infinite depth k0h!1, where !0 D
p
gk0. If this value of q is used, the fre-

quency ! of the wavetrain of (6.69) becomes ! D !0

�
1C 1

2
.2a0/

2k2
0

�
, which matches the fre-

quency of the Stokes wave.12 Thus, it can be seen that the uniform wavetrain solution (6.68) of
the NLS equation corresponds to the Stokes wave. Therefore, by examining the stability of the
uniform wavetrain solution (6.68) based on the NLS equation, we can know the stability of the
Stokes wave, at least against long wavelength perturbations that can be treated as modulation.

Suppose that the amplitude and the phase of the uniform wavetrain solution are slightly
perturbed like

a D .a0 C Qa/ exp
h
�iqa2

0t C i
Q�
i
; (6.71)

12Although the second harmonic component of the Stokes wave cannot be known from the NLS equation itself, it is
obtained at the O.�2/ stage of the derivation process of the NLS equation, and it agrees with the second harmonic component
of the Stokes expansion (6.67), too.
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where Qa and Q� are both small real numbers. Substituting this into the NLS equation, and re-
taining only the first-order terms with respect to Qa and Q� , we obtain the following system of
equations that governs the disturbances:

Qat C pa0
Q�xx D 0; Q�t � p Qaxx=A0 C 2qa0 Qa D 0: (6.72)

Since this is a system of linear partial differential equations with constant coefficients, any so-
lution can be represented by superposition of the fundamental mode�

Qa
Q�

�
D

 
Oa
O�

!
ei.Kx��t/

C c.c. (6.73)

If this fundamental mode is stable for all wavenumber K, an arbitrary small perturbation su-
perimposed on the uniform wavetrain will not grow, so the uniform wavetrain is stable. On the
other hand, if there is at least one fundamental mode that increases with time, the disturbance
with the wavenumber K will spontaneously grow, so the uniform wavetrain is unstable.

Substituting (6.73) into (6.72), we obtain the “dispersion relation”

�2
D p2K2

�
K2
C 2qa2

0=p
�
; (6.74)

between K and �. According to this, if pq > 0, real K always gives real �, so that all the
fundamental modes are neutrally stable. In this case, even if a small perturbation is added to
the uniform wavetrain, it does not grow temporally, so the uniform wavetrain solution (6.68),
that is, the Stokes wave is stable. On the other hand, if pq < 0, then �2 < 0 and � is a pure
imaginary number for K satisfying

jKj <
p
�2q=p a0: (6.75)

According to (6.73), this means that the fundamental mode of such a K grows exponentially in
time with the growth rate of Im�, and hence the uniform wavetrain is unstable. The growth rate
Im� takes themaximum value jqa2

0j forK D
p
�q=p a0. As (6.75) shows, this instability occurs

only for those modes whose wavenumber K is as small as the amplitude a0. Returning to the
original �.x; t/, this means that only the wavenumber components near the carrier wavenumber
k0 are unstable and grow, and as a result it promotes the modulation of the wavetrain. From
this property, this instability is called the sideband instability, modulational instability, or
Benjamin–Feir instability from the name of its discoverers.

Figure 6.13 shows the growth rate as a function of wavenumber K, in which the growth
rate (vertical axis) and the wavenumber (horizontal axis) are normalized with the maximum
growth rate jqa2

0j and the corresponding wavenumber
p
�q=p a0, respectively.

In the case of deep-water gravity waves analyzed by Benjamin and Feir, p D �!0=8k
2
0 < 0

and q D 2!0k
2
0 > 0, hence pq < 0, and the uniform wavetrain is unstable. Substituting these

expressions of p, q into (6.74), we can immediately obtain the growth rate equivalent to the
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Figure 6.13: Growth rate Im� of modulational instability as a function of modulation
wavenumber K.

results of Benjamin and Feir. Then, the condition of modulational instability corresponding to
(6.75) becomes

jk � k0j

k0

< 2
p
2A0k0; (A0 D 2a0 is the amplitude of �) (6.76)

which indicates that only a narrow range of k around the carrier wavenumber k0 has a nonzero
growth rate. When the water depth h is finite, p and q are complicated functions of k0h as
shown in (6.52). From these expressions, it can be seen that p is always negative for all k0h, but
q changes sign as q > 0 when k0h > 1:363 and q < 0 when k0h < 1:363. This implies that the
gravity wave becomes unstable to modulation when the water depth becomes deeper than about
1/5 of the wavelength, and it can no longer propagate as a beautifully uniform wavetrain.

The NLS equation (6.33) is a very general wave equation that governs nonlinear mod-
ulated wavetrains in various media not limited to water waves. In addition, the modulational
instability is an instability that occurs whenever the coefficient p of the nonlinear term jaj2a
and the coefficient q of the group velocity dispersion term axx have opposite signs, so it is
an important phenomenon commonly observed in wave phenomena in wide range of research
fields.

6.4.3 INTUITIVE UNDERSTANDING OF MODULATIONAL
INSTABILITY

Theoccurrence ofmodulational instability whenpq < 0 can be intuitively understood as follows.
Let p < 0 and q > 0. Since p D 1

2
!00

0 D
1
2
dvg.k0/=dk, p < 0 means that the group velocity

vg , which is the velocity of energy propagation, is a decreasing function of k around k0. On
the other hand, q gives the coefficient of the frequency correction qja0j

2 due to nonlinearity as
can be seen from the relation between the uniform solution (6.68) of the NLS equation and
the corresponding actual waveform �.x; t/ of the water surface given by (6.69). From this, q > 0



136 6. MODULATION AND SELF-INTERACTION OF A WAVETRAIN
means that! of the wave, and hence the phase velocity, is an increasing function of the amplitude
around k0.

Suppose that only a certain part of the uniform wavetrain has a slightly larger ampli-
tude than the surrounding area, as shown in Fig. 6.14. Since the phase velocity is an increasing
function of amplitude (q > 0), the phase velocity of the carrier wave is a little faster in the part
where the amplitude is large, so that the wave spacing becomes narrower and the wavenumber
increases in the front of that part, and conversely, on the rear side, the wave spacing increases
and the wavenumber decreases. Then, since the group velocity is a decreasing function of k
(since p < 0), the group velocity (D energy propagation velocity) decreases at the front of the
part where k is increased, and the forward flow of energy decreases. On the other hand, the
group velocity increases with the decrease of k on the rear side of the part, and the inflow of
energy from the rear increases. Thus, if the amplitude of a part of the wavetrain is increased for
some reason, the net energy inflow (D inflow minus outflow) toward the part will occur auto-
matically. As a result, the amplitude of this part will be further increased, and the initial slight
nonuniformity of amplitude will be further enhanced. As shown in Example 4 below, the same
intuitive understanding is possible when nonuniformity occurs in the wavenumber instead of
the amplitude.

k: Decrease

vg: Increase

k: Increase

vg: Decrease

Wave Direction

Figure 6.14: Intuitive explanation of modulational instability (in the case of amplitude nonuni-
formity).

EXAMPLE 4: INTUITIVE UNDERSTANDING OF MODULATIONAL
INSTABILITY IN THE CASE OF WAVENUMBER NONUNIFORMITY
Let p < 0, q > 0 as above. When the wavenumber k becomes larger than the surroundings
at a certain part of the uniform wavetrain as shown in Fig. 6.15, explain intuitively that the
nonuniformity will increase.
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k: Large

a: Increase

c: Increase

a: Decrease

c: Decrease

Figure 6.15: Intuitive explanation of modulational instability (in the case of wavenumber
nonuniformity).

[Answer]
Since the group velocity is a decreasing function of k from p < 0, the group velocity (D

energy velocity) decreases and the energy flux decreases in the central part where k is larger than
in the surrounding area. As a result, the energy flow to the front part decreases, and the amplitude
decreases there. Conversely, due to the slow down of energy flow at the central part, there occurs
an accumulation of energy in the rear part, and the amplitude increases there. Then, since the
phase velocity is an increasing function of the amplitude (since q > 0), in the front part where
the amplitude decreases, the phase velocity of the carrier wave decreases, and hence the outflow
of the carrier wave is suppressed. Conversely, in the rear part where the amplitude increases, the
phase velocity of the carrier wave increases, and hence the inflow of the carrier wave is enhanced.
As a result, if there is a part where k is larger than the surrounding area, more and more carrier
waves will be concentrated there, and the nonuniformity of k will be further enhanced. |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4.4 MODULATIONAL INSTABILITY AND FREAK WAVE
As mentioned in Section 6.3.4, in recent years, ocean wave phenomenon called “freak waves”
or “rogue waves” has attracted attention and has been studied extensively. Freak waves are large
waves that suddenly appear in relatively calm ocean wave fields. According to [7], at least 22 large
cargo ships sank and 525 people died in the Pacific and Atlantic Oceans between 1969 and 1994
due to encounters with freak waves. Figure 6.16 shows one of the best-known examples of freak
waves called “New Year’s wave.” It can be seen that one large wave suddenly appears that exceeds
25 m in wave height among the waves with an average wave height of about 10 m. This wave
height record was observed on the platform of an offshore oil field called Draupner (Fig. 6.17)
in the North Sea. The name of the wave has come from the fact that it was observed on January
1, 1995.
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Draupner Wave Record

January 1, 1995 at 15:20, hs = 11.9 m
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Figure 6.16: Record of surface displacement of the “New Year’s Wave” (from [6]).

Figure 6.17: Draupner offshore oil field platform (from [6], photographed by Øyvind Hagen).

During tracing the time evolution of water waves by numerical simulation of the system
of basic equations (3.28), we sometimes observe in a computer a single large wave, which should
be called a freak wave, appears as shown in Fig. 6.18.
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Figure 6.18: A typical freak wave appearing in numerical simulation of water wave.
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Figure 6.19 is an example of numerical simulation result to reproduce the modulational

instability. The system of basic equations of gravity waves, i.e., (3.28) with � D 0, is faithfully
solved using the same program as that used to obtain the result shown in Fig. 6.18. The only
difference between the two cases is in the choice of the initial conditions. In the case of Fig. 6.18,
an irregular waveform suitable for ocean waves is initially adopted, while in the case of Fig. 6.19,
we adopted a sinusoidal carrier wave of Ak0 D 0:07 and superimposed on it a small modulation
of wavelength of 7 times longer than the carrier (dotted line in the figure). Since the initial
amplitude of the modulation disturbance is only 1/50 of the amplitude of the carrier wave,
the waveform at t D 0 looks almost uniform. The small disturbance (sideband components),
which satisfies the condition (6.75) and hence is unstable, gradually grows with time, and after
200 periods, the waveform like shown by the solid line in the figure appears. It can be seen
that, as a result of the nonuniformity in the wave height brought about by the modulational
instability, large water surface displacements more than twice that of the initial waveform occur
spontaneously even though there is no extra energy supply from outside of the system. From
these facts, many researchers think that modulational instability is one of the key mechanisms
for understanding freak wave phenomena.
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Figure 6.19: Appearance of a large wave due to modulational instability.

The research on freak waves originally started with the phenomenon of ocean waves, but in
recent years, both theoretical and experimental researches on freak waves are actively progressing
even in completely different physical systems, such as optical fibers, quantum mechanical system
called “Bose-Einstein condensates,” etc.
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C H A P T E R 7

Resonant Interaction Between
Waves

In the previous chapter, we investigated the phenomenon that results from non-
linear interaction with itself when there is a single wavetrain. In this chapter, we will
learn about the resonant interaction that occurs when multiple wavetrains coexist.
If the wavenumber and frequency of three wavetrains satisfy a condition called the
“resonance condition,” interesting phenomena appear such as automatic generation
of the third wave from the state where there are only two waves.

7.1 THREE-WAVE INTERACTION
7.1.1 BOUND WAVE COMPONENT
In Chapter 6, we studied that, when there is a single wavetrain, the complex amplitude a.x; t/
changes in the time scale of T0=�

2 and the space scale of about L0=�
2 as a result of nonlinear

interactions with itself, and that its evolution is governed by the nonlinear Schrödinger equation
(6.33). Here, � is a dimensionless parameter that indicates the smallness of amplitude, and T0

and L0 are the typical period and wavelength of the carrier wave, respectively.
On the other hand, when multiple wavetrains coexist, nonlinear effects may become no-

ticeable in shorter time and spaces scales. Suppose that a certain physical quantity u.x; t/ consists
of two component waves (we will call them fundamental waves) as

u.x; t/ D
�
a1ei�1 C c.c.

�
C

�
a2ei�2 C c.c.

�
; �i D kix � !i t .i D 1; 2/ (7.1)

in its lowest order O.�/. Then as can be seen from

u2
D

n
a2

1e2i�1 C a2
2e2i�2 C a1a2ei.�1C�2/

C a1a
�
2ei.�1��2/

o
C c.c.C 2

�
ja1j

2
C ja2j

2
�
; (7.2)

if the governing equation or the boundary condition of the system includes second-order nonlin-
ear terms of u.x; t/, then wave components with new pair of wavenumbers and frequencies such
as .2k1; 2!1/, .2k2; 2!2/, .k1 ˙ k2; !1 ˙ !2/ are automatically generated. However, in the case
of waves that are truly dispersive (i.e., other than ! D c0k), the combination of these wavenum-
bers and frequencies produced by nonlinearity generally does not satisfy the dispersion relation.
These oscillatory components that do not satisfy the dispersion relation can only be present with
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the fundamental waves, and are called bound wave.1 The bound wave is just an “appendix” or
“slave” of the fundamental wave, and its amplitude remains of O.�2/ as (7.2) implies and does
not grow to the level of O.�/ equal to the fundamental wave components.

Here we will confirm this by numerical simulation for a system governed by a simple
model equation

ut C uux C LŒu� D 0; (7.3)

where LŒu� is a linear operator acting on u.x; t/ that gives a dispersion relation

!.k/ D
p
k C k3; (7.4)

which is the only requirement for LŒu� to meet. As shown in Chapter 3, the linear dispersion
relation of water surface waves considering both gravity and surface tension as restoring forces is
given by (3.35).When the water depth is deep enough (i.e., tanh kh D 1) and if the wavenumber
k and frequency! are made dimensionless with appropriate representative values, (3.35) reduces
to the form of (7.4). Also, the nonlinear term of (7.3) is a typical one that appears for long waves,
as seen in the KdV equation, etc. in Chapter 5. Therefore, it can be said that (7.3) is a model
equation that has both the dispersion of the capillary-gravity type and the nonlinearity of the
long wave type.

Figure 7.1 shows the result of a numerical simulation of (7.3)2 in the case where the initial
condition consists of superposition of “wave 1” with .k1; a1/ D .0:3; 0:01/ and “wave 2” with
.k2; a2/ D .1:0; 0:01/. In the figure, the time evolution of the square of the amplitude (which
is directly proportional to the energy) of the fundamental waves k1, k2 and the bound wave
components kp D k1 C k2 .D 1:3/ and km D k2 � k1 .D 0:7/ are shown. We can see that the
bound waves stay so small almost on the horizontal axis E D 0, and that most of the energy
continues to be possessed by the two fundamental waves. When we eliminate the nonlinear term
uux and linearize the equation, the two fundamental waves will continue to have the initially
given energy permanently without interfering with each other, and no bound waves will be
generated at all. The result shown in Fig. 7.1 is close to such a linear situation, so in this case it
can be said that nonlinearity does not plays any important roles.

Another result of numerical simulation of (7.3) is shown in Fig. 7.2. This time we choose
.k1; a1/ D .0:3; 0:01/, .k2; a2/ D .1:6; 0:01/, that is, the only difference from the above case is
that the wavenumber k2 of “wave 2” is 1.6 instead of 1.0. However, as you can see, the behavior
has become surprisingly different just by this change of combination of wavenumbers. It can be
seen that, at the beginning, the energy of wave 2 decreases significantly, and instead the energy

1Although the name contains “waves,” it is not a “wave” in the strict sense because it does not satisfy the dispersion
relation that should be satisfied as a wave.

2There are many ways to solve (7.3) numerically, but here we use the simple method called the “split step method.” In this
method, in the time evolution of u, the part given by the linear term LŒu� and the part given by the nonlinear term uux are
treated separately, and these two substeps are combined to obtain a complete one temporal step. The calculation of linear term
is performed in the Fourier space by using fast Fourier transform. Refer to textbooks on numerical computation for general
information on numerical methods including this specific method.
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Figure 7.1: Evolution of energy of each component wave (non-resonance).
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Figure 7.2: Evolution of energy of each component wave (resonance).

of the bound wave of wavenumber k1 C k2 .D 1:9/ increases, and at around 11 periods in terms
of the period of wave 1, the bound wave becomes larger than wave 1 and becomes most energetic
of all the wave components. However, after that, energy starts to return to wave 2 again, and
the whole system almost returns to the initial state at around 35 periods. After that, active
energy exchange between the three waves including this bound wave is repeated periodically.
Why does such a big difference occur as seen in Figs. 7.1 and 7.2, although we only changed
the wavenumber k2 of wave 2?

7.1.2 THREE–WAVE RESONANT INTERACTION
As described above, in the case of dispersive waves, for most combinations of k1 and k2 of the
fundamental waves, combinations of wavenumbers and frequencies generated by nonlinear in-
teraction, i.e., .2k1; 2!1/, .2k2; 2!2/, .k1 ˙ k2; !1 ˙ !2/ do not satisfy the dispersion relation,
so these components remain small as bound waves of the fundamental waves. However, depend-
ing on the combination of k1 and k2, the combination of wavenumber and frequency of these
bound waves may satisfy the dispersion relation. In such a case, these components are no longer
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the bound wave of the fundamental waves, but are authentic waves, and actively participate in
the process of energy exchange between waves on the equal footing with the fundamental waves.
For example, suppose that

k1 C k2 D k3; !1 C !2 D !3 (7.5)

holds simultaneously, where !i stands for !.ki /. (7.5) means that the “sum component” of
wave 1 and wave 2 satisfies the dispersion relation. In this case, if waves of wavenumbers k1 and
k2 are initially given as fundamental waves, wave of wavenumber k3 and frequency !3 is gen-
erated by nonlinear interaction and grows spontaneously. In fact, in the numerical calculation
of Fig. 7.2, a special combination of k1, k2 was intentionally selected so that such a situation is
realized.

Whether or not there exist combinations of three wavenumbers and frequencies that sat-
isfy (7.5) depends on the form of the dispersion relation ! D !.k/. For example, for the dis-
persion relation of water surface gravity waves ! D

p
gk, the combination of such three waves

does not exist because

!1 C !2 D !3 �!
p
k1 C

p
k2 D

p
k1 C k2 �!

p
k1k2 D 0: (7.6)

However, for the dispersion relation (7.4) of the model equation (7.3) considered here, there are
pairs that satisfy (7.5) for any k1 as shown below. Equation (7.5) requiresq

k1 C k
3
1 C

q
k2 C k

3
2 D

p
.k1 C k2/C .k1 C k2/3; (7.7)

which gives a cubic equation for k2 as follows:

9k1k
3
2 C

�
14k2

1 � 4
�
k2

2 C 9k
3
1k2 � 4

�
1C k2

1

�
D 0: (7.8)

This cubic equation has one real root k2 .> 0/ for any k1 .> 0/, as shown in Fig. 7.3. The combi-
nation of the wavenumbers of the two fundamental waves adopted in the calculation of Fig. 7.2
is almost on this curve, and therefore the three waves with wavenumbers k1, k2, k3 .D k1 C k2/

are a special set that almost satisfies (7.5).
Generally, when the three wavenumbers k1, k2, k3 and their corresponding frequencies

!1, !2, !3 satisfy
k1 ˙ k2 ˙ k3 D 0; !1 ˙ !2 ˙ !3 D 0; (7.9)

active energy exchange as described above occurs between these three waves. This phenomenon
is called the three-wave resonance and (7.9) is called the three-wave resonance condition.

[Supplement]

When the target physical quantity takes only real values, a wave whose wavenum-
ber, frequency and complex amplitude are .k; !; a/ is expressed as a sum with
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Figure 7.3: k1 and k2 satisfying the resonance condition (7.5).

a complex conjugate as a ei.kx�!t/ C c.c.. This expression can also be written as
a� eiŒ.�k/x�.�!/t� C c.c.. Thus, a wave with .k; !; a/ and a wave with .�k;�!; a�/

are identical. From this, it can be seen that k can be negative, and that ! should
be extended as an odd function when extending from the region of k > 0 to that of
k < 0.

However, this does not necessarilymean that!.k/ looks like an odd function. For
example, for the equation ut t C uxxxx D 0, the dispersion relation is !2 D k4, that
is, ! D ˙k2 and does not seem like an odd function. In this system, there are two
branches (wave modes) ! D k2, ! D �k2 for one k .> 0/. When this is extended
to k < 0, it should not be understood that ! D k2 and ! D �k2 are connected on
both sides across k D 0 as even functions. It should be understood that ! D k2 for
k > 0 is connected to ! D �k2 for k < 0 while ! D �k2 for k > 0 is connected
to ! D k2 for k < 0 both as odd functions. In addition to the above, considering
that the numbering of waves is arbitrary, (7.5) alone includes all the cases of general
resonance condition (7.9). However, for the sake of simplicity here, we will continue
assuming that k and ! are positive.

We can also use graphs to see if the dispersion relation ! D !.k/ allows pairs of k satis-
fying (7.5).

Suppose that the dispersion relation is represented by a curve as shown in Fig. 7.4a, and
we will call this the dispersion curve. Suppose that, when the dispersion curve is copied on a
transparent paper T and its origin is translated to the point .k1; !1/ on the original dispersion
curve, the two dispersion curves intersect at point A as shown in Fig. 7.4b. Let the coordinates
of A on the transparent paper T be .k2; !2/ and the coordinates of the point on the original
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Figure 7.4: Graphical method of finding a set of k satisfying the resonance condition (7.5).

graph be .k3; !3/, then it is clear from the method of construction that a three-wave resonance
condition (7.5) holds between the three .ki ; !i / .i D 1; 2; 3/. In this way, we can see whether
sets of k satisfying the three-wave resonance condition exist, and we can also know their rough
positions if they exist.

7.2 THREE–WAVE INTERACTION EQUATION
7.2.1 DERIVATION OF THREE–WAVE INTERACTION EQUATION
In order to gain a more quantitative understanding of the energy exchange between the three
waves that satisfy the resonance condition, taking the model equation (7.3) as an example, let
us derive by multiple scale method the equations governing the time evolution of the complex
amplitude of the three waves. The basic idea is almost the same as when the NLS equation
was derived in the previous chapter. First, the dependent variable u.x; t/ is expanded in a small
parameter � as

u.x; t/ D
X
j D1

�juj D �u1 C �
2u2 C � � � ; uj D uj .x0; t0; t1; t2; � � � /; .j D 1; 2; : : :/:

(7.10)
Here, x0, t0 are the fast variables that look at each wave in the wavetrain, t1 D �t0 is a slowly
changing time variable to handle a long time when nonlinear effects become apparent, and
t2 D �

2t0 represents a more slowly changing time variable to see higher-order nonlinear effects.
Unlike in the case of the derivation of the NLS equation, however, we do not introduce slow
spatial variables x1, x2 to handle the effects of higher-order dispersion, i.e., the effects resulting
from having a narrow but finite-width spectrum of each wavetrain. As the time variable t is
extended to multiple t 0is, the time derivative is expanded as

@

@t
D

@

@t0
C �

@

@t1
C �2 @

@t2
C � � � : (7.11)
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Substituting the expansions (7.10) and (7.11) into (7.3) and sorting them out according to the
power of �, an approximate solution can be obtained as follows by solving them from the lower
order.

First, the problem of O.�/ gives
@u1

@t0
C LŒu1� D 0: (7.12)

Here, we adopt the sum of three waves that satisfy the three-wave resonance condition (7.5) as
the solution of the lowest order O.�/. That is,

u1 D a1.t1; t2; � � � /ei�1 C a2.t1; t2; � � � /ei�2 C a3.t1; t2; � � � /ei�3 C c.c.; (7.13a)
�j D kjx0 � !j t0; !j D

q
kj C k

3
j .j D 1; 2; 3/; (7.13b)

k1 C k2 D k3; !1 C !2 D !3: (7.13c)

From (7.13c), �1 C �2 D �3 also holds. As in the case of the modulation problem of a quasi-
monochromatic wavetrain, the complex amplitude aj of each wavetrain is constant with respect
to the fast time t0, but it is allowed to depend on slow time variables t1 and t2.

The next O.�2/ problem is given as follows:
@u2

@t0
C LŒu2� D �

@u1

@t1
� u1

@u1

@x0

D �

�
@a1

@t1
ei�1 C

@a2

@t1
ei�2 C

@a3

@t1
ei�3 C c.c.

�
�

�
a1ei�1 C a2ei�2 C a3ei�3 C c.c.

� �
ik1a1ei�1 C ik2a2ei�2 C ik3a3ei�3 C c.c.

�
: (7.14)

The nonlinear terms on the right-hand side are somewhat complicated, but from there come
out terms like e2i�1 , e2i�2 , e2i�3 , ei.�3˙�1/, ei.�3˙�2/, ei.�2˙�1/ and their complex conjugates.
Considering that �1 C �2 D �3 holds, the following also hold:

ei.�3��1/
D ei�2 ; ei.�3��2/

D ei�1 ; ei.�1C�2/
D ei�3 : (7.15)

Here, ei�1 , ei�2 , ei�3 are the homogeneous solutions of (7.14), that is, the solutions of the equa-
tion when the right side is 0. As already mentioned in the perturbation method in Chapter 4 and
the derivation example of the NLS equation in Section 6.3.3, if such a homogeneous solution
is present on the right side as a forcing term, resonance occurs and a secular term appears, and
as a result, the perturbation method breaks down. Including the part that comes out of the term
@u1

@t1
, the part on the right side which is proportional to ei�1 is�

�
@a1

@t1
� i.k3 � k2/a

�
2a3

�
ei�1 D

�
�
@a1

@t1
� ik1a

�
2a3

�
ei�1 : (7.16)

Then, from the non-secular condition that the coefficients of ei�1 , ei�2 , ei�3 on the right side
become all 0, we obtain the following set of equations that govern the time evolution of the
complex amplitude of the three wavetrains that satisfy the resonance condition (7.5):

Pa1 D �ik1a
�
2a3; Pa2 D �ik2a

�
1a3; Pa3 D �ik3a1a2; (7.17)
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where Paj on the left side denotes the time derivative of aj .

In the above, we have derived (7.17) for a specific system governed by the model equation
(7.3). However, if we apply the same analysis for an arbitrary system with a dispersion relation
that allows three-wave resonance, we almost always obtain a set of equations as follows, except
in exceptional cases,

Pa1 D �i1 a
�
2a3; Pa2 D �i2 a

�
1a3; Pa3 D �i3 a1a2: (7.18)

This is the standard equation that describes the interaction of three wavetrains that satisfy the
three-wave resonance condition of the form (7.5), and we will call it the three-wave interaction
equation.3 The coefficient j is a real number in a system that conserves energy as the system
we are treating here in this chapter.

7.2.2 MANLEY–ROWE RELATIONS
If we introduce

N1 D sgn.1/j23jja1j
2; N2 D sgn.2/j31jja2j

2; N3 D sgn.3/j12jja3j
2; (7.19)

in the three-wave interaction equation (7.18), we can see that

d

dt
ŒN1 �N2� D 0;

d

dt
ŒN1 CN3� D 0;

d

dt
ŒN2 CN3� D 0; (7.20)

which are known as Manley–Rowe relations. These relations indicate that the quantities in Œ� � � �
do not change with time.

Also, if Ej andMj are defined in terms of Nj by

Ej D !jNj ; Mj D kjNj ; .j D 1; 2; 3/; (7.21)

and considering the resonance condition (7.5) and the Manley–Rowe relations (7.20), it can be
shown that

d

dt
ŒE1 CE2 CE3� D 0;

d

dt
ŒM1 CM2 CM3� D 0: (7.22)

Nj , Ej ,Mj often have physical meanings of wave action, energy and momentum of each wave-
train, respectively, and in that case (7.22) corresponds to the conservation laws of energy and
momentum.

EXAMPLE 1: CHECKING MANLEY–ROWE RELATIONS
Verify the Manley–Rowe relations (7.20).

3Here, we have not taken into account of the spectral width of each wavetrain. If we take this into consideration, it
only replaces the time derivative of the left side of (7.18) with the translation at the group velocity of each wavetrain like
daj

dt
!

@aj

@t
C !0.kj /

@aj

@x
.
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[Answer]

From the definition (7.19) of N1, N2, and the three-wave interaction equation (7.18),

dN1

dt
D sgn.1/j23j

�
Pa1a

�
1 C c.c.

�
D sgn.1/j23j

�
�i1 a

�
2a3

�
a�

1 C c.c.
D �i j123ja

�
1a

�
2a3 C c.c.; (7.23a)

dN2

dt
D sgn.2/j31j

�
Pa2a

�
2 C c.c.

�
D sgn.2/j31j

�
�i1 a

�
1a3

�
a�

2 C c.c.
D �i j123ja

�
1a

�
2a3 C c.c.; (7.23b)

where we used sgn./ D j j. This proves the first equation of (7.20). The other two equations
can also be shown to hold similarly. |

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although details are not described here, (7.18) can be reduced to a single equation that
describes the motion of a point mass in a cubic potential by using the Manley–Rowe relations.
Therefore, it can be solved analytically using Jacobi’s elliptic functions [3]. According to it, when
the signs of coupling coefficient j are all the same, the analytical solution expresses the periodic
energy exchange among three resonant wavetrains as we saw in Fig. 7.2.

On the other hand, if the signs of j are not all the same, the analytical solution of (7.18)
shows that the solution diverges to infinity in a finite time. Divergence of amplitude apparently
contradicts the energy and the momentum conservation laws (7.22). However, the definition
(7.21) of energy Ej includes sgn.j / so that the energy Ej of the j th wavetrain is negative if
sgn.j / < 0. Under such circumstances, it is not impossible for each Ej to diverge to positive or
negative infinity while keeping the sum ofEj constant. However, do waves with negative energy
ever exist in reality? Such a situation does not usually occur for waves in stationary fluid, which
is the main focus of this book. However, for a broader wave phenomena, a seemingly strange
wave called negative energy wave actually exists.

The concept of “the sign of energy of a wave” was originally developed for the wave phe-
nomena in plasma physics. When trying to generate a wavetrain in a wave-less quiescent state, if
it is necessary to supply some additional energy to the system, the energy of the wave is positive,
if conversely it is necessary to withdraw some amount of energy from the system, the energy of
the wave is said to be negative. In other words, if wave excitation reduces the total energy of the
system, the wave is a negative energy wave. Some kind of waves in plasma have negative energy.
Therefore, in the three-wave resonant interaction that involves such waves, the amplitudes of all
three waves can become simultaneously infinite in finite time. This phenomenon has long been
known in plasma physics and is called the explosive instability. Also in hydrodynamics, in a
two-layer fluid system consisting of two fluid layers with different densities, it is known that the
waves traveling along the interface become negative energy wave in certain situations when the
two layers flow at different speeds [2].
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7.3 WAVE GENERATION AND EXCITATION BY
THREE–WAVE RESONANCE

Continuing from the previous section, we will look specifically at two interesting phenomena
brought about by the three-wave resonant interactions.

7.3.1 GENERATION OF THE THIRD WAVE BY TWO WAVES
As considered at the beginning of this chapter, let us assume that only two waves, “wave 1” and
“wave 2” exist initially, that is, at t D 0, a1 D a10 ¤ 0, a2 D a20 ¤ 0, a3 D 0. Then, in the initial
stage where a3 is still very small and can be approximated as a3 � 0, we can get from (7.18)

Pa1 � 0 �! a1.t/ � a10; Pa2 � 0 �! a2.t/ � a20;

Pa3 � �i3a10a20 �! ja3j � G t; G D j3a10a20j: (7.24)

From this, it is predicted that “wave 3” with the wavenumber k3 .D k1 C k2/which did not exist
initially is generated by the resonant interaction, and its amplitude grows in proportion to time.
Let us verify this by direct numerical simulation of the model equation (7.3) same as that shown
in Fig. 7.2. However, since we are interested in the initial behavior of wave 3 this time, we will
reduce the amplitudes of wave 1 and wave 2 to a10 D 0:001, a20 D 0:001 to make the initial
stage of time evolution longer.

In the case of the three-wave interaction equation (7.17) for the model equation (7.3),
3 D k3 D 0:3C 1:6 D 1:9. Therefore, according to (7.24), the growth rate G of a3 is predicted
to be 1:9 � 10�6. Figure 7.5 shows ja3j obtained from the numerical simulation of the model
equation as a function of t , and it is clear that a3 grows in proportion to t . In addition, the growth
rate G estimated from the slope of the graph is G D 1:83 � 10�6, showing a good agreement
with the theoretical value G D 1:90 � 10�6. It should be noted here that this numerical calcula-
tion directly simulates the model equation (7.3) itself, not the three-wave interaction equation
(7.17). Therefore, it can be said that the good agreement between the theoretical prediction and
the numerical simulation results on the initial growth rateG of wave 3 also indicates the validity
of the three-wave interaction equation (7.17) itself.

Figure 7.6 shows the result of exactly the same numerical simulation as Fig. 7.5 for a longer
time. The growth of a3 in proportion to t seen in Fig. 7.5 holds only under the assumption that
a3 is small, and the behavior disappears as it grows and approaches the same size as a1 and a2.
Looking at longer times, the periodic energy exchange between resonant three waves, which is
the behavior predicted by the analytical solution of the three-wave interaction equation, can be
clearly observed also in the direct numerical simulation of the model equation. Here we treated
the case where wave 1 and wave 2 existed initially and wave3 with k3 .D k1 C k2/ was generated
and grew, but this phenomenon occurs in the same way when any two of the three resonating
waves exist initially.
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Figure 7.5: Generation and evolution of wave 3 by three-wave resonance (linear growth in initial
stage).
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Figure 7.6: Generation and evolution of wave 3 by three-wave resonance (periodic behavior in
long term).

7.3.2 EXCITATION OF TWO WAVES BY ONE WAVE
Then what happens if there is only one wave initially? According to the three-wave interaction
equation (7.18), if there is only one wave, Paj D 0 .j D 1; 2; 3/ for all three waves, so no change
occurs. However, as we will see below, if the other two waves have little but non-zero energy,
they may grow rapidly. Suppose, for example, that most of the energy is concentrated in wave3
initially, that is, ja3j � ja1j; ja2j � 0 at t D 0. Then Pa3 � 0 from the third equation of (7.18),
hence a3 � a30 (constant). Differentiating the first and the second equations of (7.18) once
again with respect to t with a3 � a30 in mind, we obtain

Ra1 � �i1 Pa
�
2a30 D �i1 .i2 a1a

�
30/a30 D 12ja30j

2 a1; (7.25a)
Ra2 � �i2 Pa

�
1a30 D �i2 .i1 a2a

�
30/a30 D 12ja30j

2 a2: (7.25b)
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Since we assume that the wave energy is all positive and that j > 0, this equation indicates that
a1 and a2, which were initially small, may increase exponentially in time like

a1; a2 / eGt ; G D
p
12 ja30j: (7.26)

This result implies that it is possible to supply energy to two weak waves (k1, k2) by injecting
one strong wave (k3). This phenomenon is called the parametric excitation or decay instability.
The former is a nomenclature that focuses on the growth of the k1 and k2 waves, and in this
case the k3 wave that supplies energy is called the “excitation wave” or “pump wave,” On the
other hand, the latter is a name focusing on the k3 wave that is deprived of energy. If the small
amplitude waves of wavenumber k1 and k2 are regarded as small disturbances for a state in which
only k3 wave exists, the k3 wave is naturally classified to be unstable in the sense that the small
disturbances grow exponentially with time.

Considering the resonance condition (7.5), in the above case, the wave k3 whose role is to
supply energy to others is the wave with the highest frequency among the three waves. In fact,
parametric excitation does not occur except in this situation. For example, suppose that only
wave 1 has a large energy at t D 0, and let ja1j � ja2j; ja3j. Then, if we do the same thing as
deriving (7.25), we will get

a1 � a10 (constant); Ra2 � �23ja10j
2 a2; Ra3 � �23ja10j

2 a3: (7.27)

Since 23ja10j
2 > 0, these equations mean that a2 and a3 behave oscillatory like cos and sin

instead of exponentially. Thus, wave 1 or wave 2 cannot become a pump wave that supplies
energy and excites other two waves.

All of the above discussions are not based on the governing equation of the system itself,
in this case the model equation (7.3), but only theoretical predictions based on the approximate
equations (7.18) derived by the perturbation method. In the following, we will verify the validity
of the above predictions by performing direct numerical simulation of the model equation (7.3).
We will employ .k1; k2; k3/ D .0:3; 1:6; 1:9/ again as a set of wavenumbers which almost satisfy
the three-wave resonance condition (7.5). Figure 7.7 shows the time evolution of the energy
of each wave when giving most energy to the wave of k3 which has the highest frequency at
t D 0 and the energy of about 1/100 is given to k1 and k2. As predicted by the three-wave
interaction equation, it can be seen that the waves of k1 and k2 grow rapidly due to energy
injection (pumping) from k3. The periodic energy exchange seen later is also consistent with
the behavior of the analytical solution of the three-wave interaction equation. According to the
dispersion relation ! D

p
k C k3 of the model equation (7.3), the frequencies corresponding to

k1 D 0:3, k2 D 1:6, k3 D 1:9 are f1 D 0:09, f2 D 0:38, f3 D 0:47, respectively.The result shown
in Fig. 7.7 implies that a phenomenon something like the following can happen. Suppose that
we generate waves by moving the wavemaker installed at one end of the wave flume at the
frequency of 0.47 Hz, and observe the wave motion at a certain point downstream. Then, if we
measure the wave at a point corresponding to “100” in the figure, there is almost no 0.47 Hz
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component that we had generated, but somehow waves with frequencies of 0.09 Hz and 0.38
Hz are prominently observed.4 If this is the case of light, even though you inject a blue light
with high frequency to the medium, it may change to a mixture of green and red when you take
it out somewhere corresponding to the “100” in Fig. 7.7.
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Figure 7.7: The evolution of energy of each wave when most of energy is given to k3 initially.

On the other hand, Fig. 7.8 shows the result of the case when most of the energy is given
to k1 D 0:3 at t D 0. Since k1 is not the wave with the highest frequency among the three
resonant waves, it can be confirmed that pumping of k2 and k3 does not occur as predicted by
the three-wave interaction equation, and the state in which only k1 has energy continues over
time. In the figure, the energy of k2 and k3 are too small to be distinguished from the horizontal
axis.
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Figure 7.8: The evolution of energy of each wave when most of energy is given to k1 initially.

4Note that this is a story of an imaginary world governed by the model equation, and exactly the same phenomenon does
not happen with real water waves.



154 7. RESONANT INTERACTION BETWEEN WAVES

7.4 SPECIAL TYPES OF THREE–WAVE RESONANCE
Among the three-wave resonant interactions, there are two types with special names. One is the
long-wave short-wave resonance and the other is the harmonic resonance. Let’s look at each
one below.

7.4.1 LONG-WAVE SHORT-WAVE RESONANCE
When the wavelength of one of the three waves (for example, the first wave) satisfying the
resonance condition (7.5) is very long compared to the other, i.e., the wavenumber is very small,
the condition for k of (7.5) can be written as follows:

k1 D �k; k2 D k0 ��k=2; k3 D k0 C�k=2; .�k � k0/: (7.28)

Then the condition !1 D !3 � !2 for ! gives

!.�k/ D !.k0 C�k=2/ � !.k0 ��k=2/; (7.29)

this can be written as
lim

�k!0

!.�k/

�k
D
d!

dk

ˇ̌̌̌
k0

(7.30)

by dividing both sides by �k and taking the limit of �k ! 0. Note that the left side represents
the phase velocity of the “long wave” with wavenumber �k, while the right side represents
the group velocity of the “short wave” with wavenumber k0. That is, in the case of three-wave
resonance including waves having very different wavelengths, the resonance condition can be
expressed as “the group velocity of the short wave and the phase velocity of the long wave are
equal.”

In a strongly dispersive wave, the short waves and the longwaves generally have very differ-
ent propagation velocities, and they have almost no direct interaction with each other. However,
a strong interaction may occur between the envelope of the short wave (such as modulation of
the amplitude) which is transmitted at the group velocity and the waveform of the long wave
by both propagating together at an equal speed for a long time. In this case, the original picture
of the interaction among three resonant waves is modified to that of interaction between two
components, i.e., interaction between a modulated wavetrain a.x; t/ei.k0x�!0t/ C c.c. and a long
and non-oscillatory fluctuation B.x; t/.

If we derive equations that describe the evolution of a.x; t/ andB.x; t/ from the governing
equations of the system by perturbation method in the situation when long-wave short-wave
resonance occurs, we often get a system of equations like follows:

i

�
@a

@t
C !0.k0/

@a

@x

�
C p

@2a

@x2
D q1aB;

@B

@t
C cp

@B

@x
D q2

@jaj2

@x
; (7.31)

where cp is the phase velocity of the long wave. The meaning of the left side of the first equation
for the complex amplitude a of the short wave is the same as in the case of theNLS equation.The
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right side expresses an effect like a Doppler effect by which the frequency of k0-wave changes
by an amount proportional to B that appears to be “flow” rather than “wave” when viewed from
the short wave k0. On the other hand, the second equation for B shows that spatial modulation
of the short wave .jaj2/x works as the source for producing long wave component.

One example of this phenomenon is the interaction between the waves on the surface of
the sea (short wave) and the internal wave (long wave) associated with density stratification [8].
In many sea areas, it is often observed that the sea water temperature changes rapidly near some
water depth, and above this narrow transition layer is a seawater which is warmer and lighter, and
below it is a seawater which is colder and heavier. Such an interface of density and temperature
is called pycnocline or thermocline. In such a two-layer fluid, there exit two kinds of waves, the
surface wave mode in which the water surface is mainly displaced and the interfacial wave mode
(or internal wave mode) in which the interface is mainly displaced. In a typical situation, the
wavelength of the interfacial wave propagating along the thermocline is about 100 m, and its
phase velocity is about 50 cm/s. The phase velocity of the surface wave that can be resonant with
this through the long-wave short-wave resonance is about 1 m/s, so that its wavelength is less
than 1 m, which is rather short wave. When a long wavelength interfacial wave is generated by
the movement of the seawater due to tides colliding with the undulation of the seabed, a short
wavelength surface wave is generated on the water surface synchronizing with the phase of the
long interfacial waves. Photographs of the sea surface taken from satellites and aircrafts often
show regular patterns of light and dark stripes in the surface waves of the sea. This is considered
to be a visualization of the modulation pattern of the surface waves which is generated by the
interfacial waves through the long-wave short-wave resonance between the interfacial waves and
the surface waves.5

7.4.2 HARMONIC RESONANCE
Another special type of three-wave resonance occurs when two of the three waves are the same
wave. In the case of k1 D k2 D k0, k3 D 2k0 in (7.5), the condition for ! becomes

!.2k0/ D 2!.k0/ �!
!.2k0/

2k0

D
!.k0/

k0

: (7.32)

This requires that the second harmonic of the fundamental wave k0 has the same phase velocity
as the fundamental wave. This type of three-wave resonance is called the second-harmonic
resonance. When the lowest-order O.�/ solution consists of a single fundamental wavetrain
a0 ei.k0x�!0t/, the nonlinearity generates the second harmonic component a2

0 ei.2k0x�2!0t/. As
discussed at the beginning of this chapter, if the system is dispersive, the combination .k; !/ D
.2k0; 2!0/ does not satisfy the dispersion relation inmost cases, and this component usually stays
as small as O.�2/ as a bound wave of the fundamental wave .k0; !0/. However, when (7.32) is

5Many photographs of sea surface waves which show the existence of waves inside the ocean can be seen on several
websites, for example at http://www.internalwaveatlas.com/.

http://www.internalwaveatlas.com/
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satisfied, this second harmonic itself becomes an authentic wave that satisfies the dispersion
relation, and participates in the energy exchange on equal footing with the fundamental wave.

The existence of the second harmonic resonance also becomes apparent in the process
of calculating the Stokes wave solution of the capillarity gravity wave on the water surface. As
discussed in Section 3.4.2, when finding a nonlinear correction to the sinusoidal wave solution

�.x; t/ � a1 cos.kx � !t/; !.k/ D

r
gk C

�

�
k3 (7.33)

of the linear theory, we first assume this solution at the lowest-orderO.�/ of the amplitude, and
find nonlinear solution in an expansion form in �. For most wavenumbers k, this perturbation
expansion can proceed without problems, and the higher-order terms are found sequentially in
the form of harmonics an cosŒn.kx � !t/�. In this case, these nth harmonic components are
bound waves, and their amplitude an becomes O.an

1/ (Stokes expansion).
However, when k D

p
�g=2� , the denominator of the expression for the amplitude a2 of

the second harmonic becomes 0, and the perturbation calculation breaks down. According to the
linear dispersion relation !.k/ D

p
gk C �k3=� of capillary gravity waves, it can be seen that

the condition (7.32) of second-harmonic resonance is satisfied when k D
p
�g=2� . In this case,

the second harmonic that appears in the Stokes expansion is a “free wave” that itself satisfies
the dispersion relation, and has the right to have energy equivalent to the fundamental wave
through the second harmonic resonance.

Therefore, in this situation, in order to find a nonlinear approximate solution correspond-
ing to the Stokes wave, it is necessary to start assuming the form

�.x; t/ � a1 cos.kx � !t/C a2 cos.2kx � 2!t C �2/ (7.34)

instead of the usual (7.33) as the lowest order solution. The steadily traveling wave solution
obtained by such an analysis assuming the lowest order as (7.34) is known as Wilton’s ripple in
the context of water waves [6]. Wilton’s ripple becomes a steadily traveling waves with somewhat
complex waveforms with two peaks in one wavelength, as shown in Fig. 7.9.6

In Example 1 of Chapter 6, for a system governed by the KdV equation (6.34), it was
confirmed that the NLS equation describing the evolution of the complex amplitude a.x; t/ of
a quasi-monochromatic wavetrain is given in the form

i

�
@a

@t
C vg

@a

@x

�
C
1

2

dvg

dk

@2a

@x2
D ˛2

�
k2

D.2k; 2!/
C

k

vg � c

�
ajaj2: (7.35)

A point to be particularly noted here is that if the carrier wavenumber k satisfiesD.2k; 2!/ D 0
or vg.k/ D c, then the coefficient of the nonlinear term on the right side of (7.35) diverges.

6In the dispersion relation !.k/ D
p

gk C .�=�/k3, !.nkn/=nkn D !.kn/=kn also holds for wavenumber kn given
by kn D

p
�g=n� .n D 1; 2; 3; : : :/. As a result, the phase velocity of the nth harmonic becomes equal to that of the fun-

damental wave, and strong interaction occurs between them as well.
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Figure 7.9: An example of the wave profile of Wilton’s ripple.

Obviously, the former case corresponds to the second harmonic resonance, and the latter case
corresponds to the long-wave short-wave resonance. As apparent from the process of deriva-
tion of (7.35), if the governing equation of the system includes a quadratic nonlinearity, then
D.2k; 2!/ always appears in the denominator of the coefficient of the second harmonic com-
ponent (/ a2 e2i� ) of O.�2/. It is also a general property that the propagation of the DC com-
ponent (D long wave) of O.�2/ generated by nonlinear interaction is related to the amplitude
modulation (/ @jaj2=@x) through the equation like (6.48a). Therefore, the fact that the factors
1=D.2k; 2!/ and 1=.vg � c/ appear in the coefficient of the NLS equation is not limited to
the case of using the KdV equation as the starting point but is a very common phenomenon.
Thus, the three-wave resonant interaction may appear in the form of the harmonic resonance
and the long-wave short-wave resonance even in a seemingly unrelated problems of modulation
of quasi-monochromatic wavetrain, and sometimes requires a modification of the method of
analysis.

7.5 FOUR–WAVE RESONANT INTERACTION

Depending on the form of the dispersion relation, there may be no set of three waves satisfying
the three-wave resonance condition. The dispersion relation of surface gravity wave ! D

p
gk

is one such example. In such a case, the resonant interaction between four waves is the most
important nonlinear interaction. Phillips [7] was the first to study nonlinear interactions between
waves in the context of fluid dynamics. He was a research student at that time at the University
of Cambridge, England, where theoretical research on turbulence of fluid dynamics was actively
carried out. One of the main concerns in turbulence theory was the energy transfer between
different wavenumbers due to nonlinearity of the Navier–Stokes equation. After that, Phillips,
who became interested in water waves, thought that “the governing equations of water waves are
also nonlinear, and there should be energy transfer between different waves as in turbulence,” and
he started to calculate the nonlinear interaction between gravity waves. Ironically, the dispersion
relation of gravity waves is a type that does not allow three-wave resonance, and he had to carry
out very cumbersome analysis up to the third order of the amplitude in order to find a strong
interaction between waves. Thus, the study of nonlinear interaction of water waves began with
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the study of the resonant interaction not between three waves but between higher-order four
waves.

As can be inferred from the three-wave resonance condition (7.9), the condition for the
resonant interaction between four waves to occur are give by7

k1 ˙ k2 ˙ k3 ˙ k4 D 0; !1 ˙ !2 ˙ !3 ˙ !4 D 0: (7.36)

In particular, in the case of the dispersion relation of gravity waves, it is known that, among var-
ious combinations of the signs in (7.36), there exist sets of four waves that satisfy the resonance
condition only for

k1 C k2 D k3 C k4; !1 C !2 D !3 C !4; !j D

q
gjkj j .j D 1; : : : ; 4/: (7.37)

This always holds if kj are all equal, or if k1 D k3, k2 D k4. Thus, unlike the three-wave reso-
nance, sets of four waves that satisfy the four-wave resonance condition always exist regardless
of the form of the dispersion relation.

Suppose that the lowest order water surface displacement can be written as

�.x; t/ D

4X
j D1

aj .t/ei�j C c.c.; �j D kj � x � !j t (7.38)

as a sum of four gravity waves that satisfy the resonance condition (7.36).Then, as can be inferred
from the derivation processes of the NLS equation (6.33) and that of the three-wave interaction
equation (7.18), the evolution equations for the complex amplitude aj .x; t/ are governed by a
system of equations consisting of

Pa1 D i

0@ 4X
j D1

q1j jaj j
2

1A a1 C i1a
�
2a3a4; (7.39)

and three similar equations for Paj .j D 2; 3; 4/ [1].8 The coefficients qij and i are all real num-
bers, and their values depend on the four wavenumber vectors kj . On the right side, the term
i
�P4

j D1 qij jaj j
2
�
ai indicate that the frequency of the i th wave is modified by an amount pro-

portional to the square of the amplitude of the j th wave. The diagonal element qi i is nothing but
the correction resulting from the interaction with itself, i.e., the coefficient q of the nonlinear
term of the NLS equation. On the other hand, the off-diagonal element qij .i ¤ j / represents
an effect similar to Doppler shift caused by the DC component of O.�2/ that are generated as a
result of self-interactions of other waves. It is known that these terms do not change the length

7Since water waves propagate in the 2D plane, i.e., the water surface, in ordinary circumstances, their wavenumbers are
generally 2D vectors. Reflecting that, we here denote the wavenumber as a vector.

8When we also consider spatial modulation, the d=dt in (7.39) is replaced by @=@t C vg.kj / � r.
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of ai , and thus they only affect the wave speed of wave 1 but do not contribute to the exchange
of energy. It is known that the energy exchange between four waves is brought about exclusively
by the last term on the right hand side that includes i . As can be seen from the form of (7.39),
the rate of change of the complex amplitude ai generated by the four-wave resonant interaction
is of O.�3/, so the space-time scale at which the effect appears prominently is T0=�

2, L0=�
2,

which is much longer than three-wave resonance.
Most of the research on ocean waves before 1960 was based on the idea that ocean wave

fields consist of linear waves and their superpositions, except for very specific topics such as
Stokes waves. Even when Phillips proposed for the first time in 1960 the theory of energy ex-
change between gravity waves by four-wave resonant interactions, it seems that most researchers
were quite skeptical about the importance of nonlinearity. In 1961, the U.S. Naval Oceano-
graphic Office held a large international conference entitled “Ocean Wave Spectra.” In its con-
ference proceedings [9], hot controversies such as the one between Phillips and other researchers
who had strong doubts about the possibility of creation of new waves by nonlinear interactions
and of their growth to as large asO.a/ are recorded, which are all very interesting to read. Nowa-
days, the importance of nonlinear interactions is common sense, and is written in any textbook,
but these controversies in the Proceedings suggest that only about 60 years ago, even the top
researchers felt quite uncomfortable for the idea that such high-order nonlinear interactions
generate waves and even change the energy spectra. However, such suspicions were completely
wiped out by the two experiments conducted by the Longuet–Higgins group and the Phillips
group [4, 5]. For ease of wave tank experiment, they chose a special set of wavenumbers satisfy-
ing (7.37) so that k1 D k2 and k1 and k3 are perpendicular to each other. They generated waves
with wavenumber k1.D k2/ and k3 from each of the wave makers installed on two adjacent
sides of a rectangular wave tank, then they observed that an obliquely propagating wave with a
wavenumber k4 determined by (7.37) was actually generated, and also observed that the gen-
erated wave grew with the propagation distance at the growth rate expected from (7.39). These
studies have established that the wave-wave interaction due to nonlinearity is an important fac-
tor for the development of the actual ocean waves and the evolution of the spectrum, and these
ideas are also used in the numerical forecast of the ocean waves that are being conducted today.
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C H A P T E R 8

Wave Turbulence: Interaction
of Innumerable Waves

In the previous chapter, we considered about nonlinear interactions between
three and four waves. However, for example, in the field of ocean waves generated
by a storm or in the elastic waves generated when a thin iron plate is continuously
struck, innumerable waves having different frequencies and propagation directions
coexist. Such a state in which innumerable waves coexist and interact nonlinearly
with each other is called “wave turbulence” or “weak turbulence.” In this chapter,
using ocean waves as a concrete example, we introduce a method of description of
such a complex wave field in terms of statistical quantities such as representative wave
heights and energy spectrum.

8.1 ENERGY SPECTRUM

When you stand on a shallow beach, you can see waves coming from offshore. As a wave ap-
proach the shore, its shape deforms, but you can keep watching one particular wave. The long
waves targeted by the KdV equation of Chapter 5 are just such waves, and it would be natu-
ral to use the surface deformation �.x; t/ itself to describe the behavior of these waves. On the
other hand, the waves you see when you get on a ship and go offshore are quite different. The
shape of the water surface keeps changing irregularly without staying in the same shape even
for a moment, and if you try to keep watching one particular wave, it disappears somewhere
immediately. It is very difficult to handle such a complicated surface wave condition by treating
directly the ever-changing surface deformation �.x; t/ itself, and it would not be practical even
if it were possible.

Why do the ocean waves behave so complicated and irregularly? That is because an infinite
number of wavetrains with different wavelengths and propagation directions overlap each other.
In the case where many wavetrains with different wavenumbers overlap, surface displacement
�.x; t/ can be written as

�.x; t/ D

1X
j D0

aj cos
�
kjx � !.kj /t C �j

�
(8.1)
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if effects of small nonlinearity is ignored, where j is a subscript to distinguish each wavetrain.
As shown in Chapter 3, according to the linear theory, the energy densityE of a sinusoidal wave
of amplitude a, i.e., the average energy that a sinusoidal wave has per unit length (per unit area
if the propagation is in 2D), is given by E D �g�2 D �ga2=2. Therefore, the energy density of
the wave field represented by (8.1) is given by

E D �g�2 D
1

2
�g

1X
j D0

a2
j ; (8.2)

where �2 denotes the spatial average

�2 D lim
L!1

1

L

Z L

0

f�.x/g2 dx: (8.3)

When discussing ocean waves, the density of water � and the gravitation acceleration g can be
considered as constants, so although dimensionally incorrect, �2 is often called “energy density.”
Below we follow this convention.

When every wavenumber is included, (8.2) becomes a sum with respect to k which is very
close, and it is convenient to introduce a continuous function E.k/ of k and express (8.2) as an
integral as

�2 D

Z 1

0

E.k/ dk: (8.4)

Then such E.k/ is called the wavenumber spectrum. From (8.2) and (8.4),

E.k/ dk D
1

2

kCdkX
k

a2
j ; (8.5)

where the sum on the right-hand side is taken for all waves with kj that satisfy k < kj < k C dk.
From its definition, E.k/ tells us how the total energy E per unit length (or area) is distributed
in the wavenumber k space. The wavenumber k and the frequency ! are linked through the
dispersion relation, so (8.4) can also be expresses as

�2 D

Z 1

0

E.k/
dk

d!
d! D

Z 1

0

F.!/ d!; F.!/ � E.k/=!0.k/; (8.6)

and the energy density can also be expressed as an integral with respect to !. F.!/ tells us how
the energy is distributed in the ! space, and is called the frequency spectrum. The relation
corresponding to (8.5) becomes

F.!/ d! D
1

2

!Cd!X
!

a2
j ; (8.7)
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where the sum is taken over all waves with !j that satisfy ! < !j < ! C d!. For a wave field
where an infinite number of wavetrains coexist and the waveform behaves in a complex and
irregular manner, understanding the spectra such as E.k/ and F.!/ and predicting their spatio-
temporal developments become the central subjects of research.

8.2 STATISTICS ABOUT WAVE HEIGHT
8.2.1 DEFINITION OF INDIVIDUAL WAVES AND REPRESENTATIVE

WAVE HEIGHT
The Pierson–Moskowitz spectum (P-M spectrum):

F.!/ D 5E!4
m!

�5 exp
"
�
5

4

�
!

!m

��4
#
; (8.8)

graphically shown in Fig. 8.1, is a representative frequency spectrum of a fully developed ocean
wave field that has been blown by wind for a sufficiently long time and a long distance. Here,
E D �2, and!m is the frequency at whichF.!/ takes its maximum. Figure 8.2 shows an example
of a time series which has the P-M spectrum as the frequency spectrum. Although this is an
artificial time series created on a PC, it would be not so different from this if we plot the actual
ocean wave observation data.
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Figure 8.1: The Pierson–Moskowitz spectrum.

In the TV news program, the weather forecaster announces something like “Tomorrow’s
wave height in Tokyo Bay will be 2.0 m,” but if you think of a complex waveform like Fig. 8.2,
a question like “What does this wave height mean?” may come up. The wave height used in
weather forecasting is a representative value of wave height called the “significant wave height”
which is defined as follows.

In order to discuss the wave height, it is necessary to first divide the irregular waveform as
shown in Fig. 8.2 into each single waves. For ocean waves themselves, however, there is no such
thing that “This one wave starts at this point of time and ends at this point of time.” Therefore,
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Figure 8.2: An example of time series corresponding to the P-M spectrum (fm D 10 s).

no matter how we divide the continuous record of �.t/ into a collection of single wave, it can be
nothing but quite artificial. One commonly used method for doing this is the downward zero-
crossing method. Suppose there is a time record of water surface displacement �.t/ observed
at a certain fixed point. In the downward zero-crossing method, as shown in Fig. 8.3, the time
series is divided at the point where �.t/ crosses 0 downward and goes from positive to negative,
and it treats that part between successive two downward zero-crossing points as one wave. Each
wave thus defined is called an individual wave.1

T1 T2 T3

H1
H2

H3
t

Figure 8.3: The downward zero-crossing method.

The time interval between the ends of each individual wave defines the “period” of that
wave, and the difference between the maximum and minimum values of � between that time

1Of course, there is also a way called the upward zero-crossing method, which is opposite to this and divide the time
series at points where �.t/ crosses 0 upward from negative to positive. When the target of the analysis is a time series, in the
upward zero-crossing method, the wave crest is combined with the subsequent trough and interpreted as one wave, while in
the downward zero-crossing method, the crest is combined with the preceding trough. There is usually no big difference in
wave statistics, whichever we choose. However, in the case of visual observation, the wave height is evaluated by how high
the wave crest is from the trough in front of it. Also, in the case where waves develop and lean forward and finally break, the
front face of a high crest, that is, the slope between the crest and the trough before it becomes the most important part. From
these facts, it seems that there are many researchers who prefer the downward zero-crossing method that treats the crest and
the trough in front of it as a set [3].

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-054.jpg&w=144&h=96
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defines the “wave height” of that individual wave. As you can imagine from Fig. 8.2, the wave
heights of the individual waves defined in this way have different values. Assuming that 100
individual waves are included in the target time series, 100 different wave heights will appear.
Then, 100 wave heights are arranged in the order from the largest one, and only one third of
them from the largest (up to 33 in the present case) is taken out, and the average value of these is
called the significant wave height, and is denoted by H1=3. Also, the mean value of the period
of these largest 1/3 individual waves is called the significant wave period and is denoted by
T1=3. The wave height forecasted in the TV program is this significant wave height calculated
by such an average procedure.

8.2.2 PROBABILITY DISTRIBUTION OF WAVE HEIGHT
The significant wave height is a convenient statistical quantity that can roughly express the con-
dition of the sea with only one quantity, but only with that information it is impossible to know
how often a wave of a certain wave height appears. The probability density function (PDF) of
wave height H is a function of H such that the probability that the wave height takes a value
between H and H C dH is express as p.H/dH . It is known that p.H/ is approximately given
by

p.H/ D
�

2

H

H
2

exp
"
�
�

4

�
H

H

�2
#
; (8.9)

for a rather wide range of ocean conditions [9, 14]. Here H represents the average wave height
defined by

H D

Z 1

0

H p.H/ dH: (8.10)

The PDF (8.9) is called the Rayleigh distribution, which is one of the representative PDF that
we can see in various fields of research, not limited to the wave height distribution of ocean
waves.2

[Supplement]

In the process of theoretically deriving that the PDF of wave heightH becomes
(8.9), the spectrum is assumed to be narrow. However, as can be seen from the P-M
spectrum shown in Fig. 8.1, the actual spectrum of ocean waves does not seem so
narrow that such an approximation can be used. Nevertheless, this Rayleigh distri-
bution holds fairly well for the actual ocean wave height distribution. One reason
for this is that each individual wave is defined by the zero-crossing method. When

2It is known that the PDF of �.t/ becomes a Gaussian distribution according to the central limit theorem when �.t/
is a superposition of an infinite number of independent harmonic oscillations. And at this time, it can be shown theoretically
that, in the limit where the width of the frequency spectrum of �.t/ is narrow, the PDF of the local maximum value of �.t/
(the value of � at the wave crest in the case of water surface displacement) is given by the Rayleigh distribution.
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the spectrum is broad, the waves with higher frequencies (and hence shorter wave-
lengths) appear in the waveform as being superimposed on the more energetic waves
with lower frequency (and hence longer wavelength), hence these small waves tend
to have little effect on the dividing process into individual waves in the zero-crossing
method. For this reason, the zero-crossing method plays a role like a low-pass filter
that allows only low-frequency components to pass, and is considered to have the
effect of making the substantial spectrum width narrower than it actually is.

Note that if we introduce the dimensionless wave height � D H=H normalized by the
average wave height H , (8.9) can be written as

p.�/ D
�

2
� exp

�
�
�

4
�2
�
; (8.11)

which is graphically shown in Fig. 8.4.

0.8

0.6

0.4

0.2

0
0 3 421 5

ξ

p
(ξ
)

Figure 8.4: Rayleigh distribution for dimensionless wave height �.

Then, the “excess probability” P.�/ defined by P.�/ �
R1

�
p.� 0/ d� 0 (therefore p.�/ D

�dP.�/=d�) is given by P.�/ D exp.���2=4/.

EXAMPLE 1: PDF OF DIMENSIONLESS WAVE HEIGHT
From the PDF of the wave heightH given in (8.9), derive the PDF (8.11) of the dimensionless
wave height �.

[Answer] Z 1

0

p.H/ dH D

Z 1

0

p.�/ d� D 1 �! p.H/ dH D p.�/ d�: (8.12)
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From this and H D H �,

p.�/ D p.H/
dH

d�
D
�

2

H�

H
2

exp

24��
4

 
H�

H

!2
35 H D

�

2
� exp

�
�
�

4
�2
�
: (8.13)
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If the wave height distribution p.H/ is known, the relationship between the average wave
height H and the significant wave height H1=3 can also be known. Let the wave height distri-
bution p.H/ be given by (8.11), and let �3 be the dimensionless wave height such that the
probability of occurrence of waves with normalized wave height higher than �3 is 1/3. Then
from the definition of �3Z 1

�3

p.�/ d� D
h
exp

�
�
�

4
�2
�i�3

1
D exp

�
�
�

4
�2

3

�
D
1

3
: (8.14)

From this, �3 D 2
p

ln 3=
p
� � 1:183. This means that, for example, when there are 300 waves,

the wave height of the 100th wave counted from the largest wave height is 1.183 times the
average wave height. Since the dimensionless wave height �1=3 corresponding to the significant
wave height H1=3 is the average value of � larger than �3, it is given by

�1=3 D

Z 1

�3

� p.�/ d�

�Z 1

�3

p.�/ d� D �3 C 3 erfc
�p

�

2
�3

�
: (8.15)

Here, erfcŒx� is a function called “complementary error function,” and is defined as follows to-
gether with the usual “error function” erfŒx�:

erfŒx� D 2
p
�

Z x

0

e�t2

dt; erfcŒx� D 2
p
�

Z 1

x

e�t2

dt D 1 � erfŒx�: (8.16)

Since .
p
�=2/�3 D

p
ln 3 � 1:048, and erfcŒ1:048� � 0:138, (8.15) gives,

�1=3 D
H1=3

H
� 1:183C 3 � 0:138 D 1:597: (8.17)

That is, when the probability density of wave height is given by the Rayleigh distribution (8.9),
the significant wave height is about 1.6 times the average wave height.

EXAMPLE 5: OCCURRENCE PROBABILITY OF FREAK WAVE
The freak wave mentioned in the previous chapter is often defined as a wave with a wave height
exceeding twice the significant wave height. According to this definition, if it is predicted based
on the Rayleigh distribution (8.9), how often does a freak wave appear?
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[Answer]

Let Hf be the lowest wave height to be judged as a freak wave, and let �f be the di-
mensionless wave height corresponding toHf . Then from (8.17),Hf D 2H1=3 D 3:194H , i.e.,
�f D 3:194. Let Pf be the occurrence probability of freak waves,

Pf D

Z 1

Hf

p.H/ dH D

Z 1

�f

p.�/ d� D
h
� exp

�
�
�

4
�2
�i1

�f

D e�8:012
D 3:31 � 10�4: (8.18)

Therefore, a freak wave is expected to occur at a rate of about 1 wave in 3000 waves.3 |
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8.3 EVOLUTION EQUATION OF ENERGY SPECTRUM
In the case of the actual ocean waves, the wave travels in a horizontal 2D plane, and the
wavenumber becomes a 2D vector k. Along with that, the relation between �2 and energy spec-
trum E.k/ given by (8.4) is also rewritten to the integral on the 2D k-plane as

�2 D

Z
E.k/ dk: (8.19)

The SMB method (see the column at the end of this chapter), the first practical wave
forecast method developed from the need for military operations during World War II, aimed
at predicting small number of statistical quantities such as significant wave height. However,
thanks to the great strides of research and also of computation facilities, the object of prediction
is now shifted to the vector wavenumber spectrumE.k/which has huge amount of information.
Although details are omitted here, in the modern wave forecasting method, E.k/ is considered
to evolve spatially and temporally according to the following equation called the energy balance
equation:

@E.kIx; t /

@t
C vg.k/ � rhE.kIx; t / D Snl C Sin C Sds: (8.20)

(See, for example, [7, 12] and [4].) Here, rh is the gradient operator in the horizontal xy-plane,
so the left side merely expresses the result of the linear theory that the energy possessed by the
wave with wavenumber k propagates at the corresponding group velocity vg.k/. On the other
hand, the right side is the various source terms that cause the change of the spectrum. Among
them, Snl represents the energy exchange between different wavenumber components due to
nonlinear interactions, Sin represents the energy input from wind, and Sds represents energy
dissipation due to breaking of overdeveloped waves. Although they are simply written as S as

3However, in the theory that uses Rayleigh distribution for the wave height distribution, it is assumed that the spectrum
is narrow, and nonlinear effects are not considered. It is known that the fact that the actual ocean wave spectrum is not so
narrow works in the direction to lower the occurrence probability of freak waves, while the effect of nonlinearity works in the
direction to increase it.
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a symbol in (8.20), they are actually rather complicated mathematical expressions including the
spectrum E.k/ and other parameters such as wind speed and direction.

Of these three source terms, the wave breaking phenomenon that Sds is trying to express
is, in particular, a hydrodynamically extremely complex phenomenon of turbulent motion of
two-phase flow which includes the interaction between sea water and air, generation of intense
turbulent motion due to wave breaking, entrainment of bubbles into water, etc. Reflecting this,
the modeling of Sds has not yet reached the stage of being built on solid theory, and the current
situation seems to be that Sds is “tuned” so that the prediction results based on (8.20) become
consistent with the huge observation data that are available nowadays by remote sensing from
satellites, etc.

In contrast, for Snl representing the energy exchange between waves due to nonlinear
interactions, which is the subject of this book, there is a world standard theory developed by
Hasselmann (1962) [2]. According to it, Snl is expressed as

Snl.k4/ D

Z Z Z
W1234ı.k1 C k2 � k3 � k4/ı.!1 C !2 � !3 � !4/

� fE1E2.E3 CE4/ �E3E4.E1 CE2/g dk1 dk2 dk3; (8.21)

where abbreviations such as E1 D E.k1/, !1 D !.k1/ has been used. The coefficient W1234 is
a complex function of k1, k2, k3, k4, and ı./ is the Dirac delta function. Since the story is
too complicated from the beginning, you do not need to worry at all if you do not understand
this expression. However, there are two important points to be noted here. The first is that the
integral expression giving Snl contains two delta functions, one for k and another for !. The
delta function ı.x/ takes on infinite value at x D 0, and remains 0 elsewhere, so it looks like an
ultimately thin pulse. The fact that such delta functions are contained in the form of a product
means that the exchange of energy occurs only between four waves for which

k1 C k2 � k3 � k4 D 0; !1 C !2 � !3 � !4 D 0 (8.22)

are satisfied at the same time, that is, the four wave resonance condition is satisfied. As men-
tioned earlier, for the dispersion relation of surface gravity waves ! D

p
gjkj, there is no pair

satisfying the three-wave resonance condition, and the four-wave resonance is the lowest order
nonlinear resonant interaction that can be realized. We studied about the resonant interactions
between three waves and four waves in the previous chapter. But even in the situation where
there are innumerable many waves like the ocean wave field, the basic mechanism of energy ex-
change between them is still a resonant interaction between three waves, or four waves if three
wave resonance is impossible.

Another important point to be noted is that not only in the case of surface water waves,
but also in various kinds of wave phenomena, the rate of change of spectrum due to nonlinear
interaction is generally given by an expression of the form similar to (8.21). As long as three-
wave resonance do not exist and four-wave resonance is the main cause of spectral change, the
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evolution of the spectrum is generally described by an equation such as (8.21). The uniqueness
or characteristics of each wave phenomenon such as whether the wave is a water wave, a wave
traveling through an iron plate, or a wave in a plasma is exclusively appears in the concrete
expressions of the dispersion relation !.k/ and the coupling coefficientW1234. In a system where
the dispersion relation allows three-wave resonance such as the model equation (7.3) in the
previous section and capillary-gravity water wave, the rate of change of the spectrum Snl due to
nonlinear interaction is generally expressed something like

Snl.k3/ D

“ eW 123ı.k1 C k2 � k3/ı.!1 C !2 � !3/ fE1E2 �E3.E1 CE2/g dk1dk2:

(8.23)
(See, for example, [10, 15].)

8.4 POWER LAW APPEARING IN ENERGY SPECTRUM
In the field observation of the frequency spectrum F.!/ of ocean wave, a spectrum of a power
law such as F.!/ / !�4 is often reported in the frequency domain somewhat higher that the
peak of the spectrum. For the readers who have read this book so far, this observational fact
can be reasonably understood by using the dimension-based consideration and the method of
roughly estimating the magnitudes of physical quantities that have often been used so far. So,
I will take up the understanding this power-law spectrum as the final issue of this book. But
before doing that, I will introduce as a preparation the Kolmogorov spectrum in turbulence,
which is well known in fluid mechanics dealing with ordinary flows not wave motion.

8.4.1 KOLMOGOROV SPECTRUM OF TURBULENCE
What is turbulence?

Whether the flow of air around a moving car or the flow of water in a water pipe, the flow
around us is very irregular and complicated, except when the flow speed is very slow. Figure 8.5
shows an example of temporal change of the wind speed measured at an observation tower set
up in a wide field without influence of buildings. As you can see, the wind speed is constantly
fluctuating irregularly. From the scale of the vertical axis, it can be seen that the data is not taken
on a stormy day, but the wind speed is quite modest. This is a normal state for the wind speed.
In fluid dynamics, such irregular flow is called a turbulence.

The motion of incompressible fluid is known to be governed by the Navier–Stokes equa-
tion (NS equation)

@v

@t
C .v � r/v D �

1

�
rp C �r2v; � D

�

�
; (8.24)

where � and � are the coefficient of viscosity and the kinematic viscosity, respectively, and both
are material constants of the fluid. The NS equation is nonlinear, and energy exchange occurs
between different wavenumber components. In the NS equation, it is the last viscosity term on
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Figure 8.5: Irregular fluctuation of wind speed. (Provided by Prof. Tamagawa, Gifu University).

the right side that has the effect of dissipating the energy of fluid motion. This includes the
second derivative with respect to the space variable, so as can be seen from the relation as “for
v D eik�x, �r2v D ��k2eik�x,” it works more strongly for components with larger k, and hence
shorter wavelengths.

Energy cascade

In a turbulent state, it is believed that the kinetic energy is first supplied to a relatively large
scale (i.e., low wavenumber) of the size of the target object (for example, vehicle body) or the size
of the container (for example, the dimension of the room). Then the energy is gradually passed
to a smaller scales (i.e., higher wavenumbers) by the nonlinear effect, and finally dissipated in
a very high wavenumber region where the viscosity works strongly. This flow of energy in the
wavenumber space is called the energy cascade.

As a concrete example, let us consider the turbulent motion around a car of length l [m]
and running at a speed v [m/s].The typical time scale T of this turbulentmotion can be estimated
by T D l=v, and the turbulent kinetic energy per unit mass (1 kg) of air can be estimated by u2.
Then, the energy dissipation rate ", that is, the amount of decrease of energy per second can be
estimated by

" � u2=T � u3=l: (8.25)

If the car continues to run at speed v, the energy of turbulence around it should also be kept
steady, so " estimated by (8.25) is not only a measure of the amount of energy dissipation per
unit time due to viscosity, but also a measure of the amount of energy supplied per unit time
from the car to the turbulent motion to compensate for the dissipation. Thus, " gives a measure
of the amount of energy flow from the low wavenumber region to the high wavenumber region
per second.

To how high a wavenumber does this energy cascade in wavenumber space last? The en-
ergy flow is represented by " of (8.25), and the viscous effect by which the cascade is stopped is
represented by the kinematic viscosity � in the NS equation, the length scale lv for which the

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-057.jpg&w=143&h=80
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cascade stops should be determined from these two. Considering that the unit of " is m2=s3 and
the unit of � is m2=s, lv should be of the order of

lv D

�
�3

"

�1=4

: (8.26)

For example, when a vehicle of length l D 4 m travels at speed of 60 km/h (v D 16:7 m/s) in
the air (� D 1:5 � 10�5 m2=s),

" � 1:2 � 103 m2=s3; lv � 4:1 � 10
�5 m D 0:041mm: (8.27)

This result shows that the energy of the vortex motion of several meters in size, which is directly
produced by the running vehicle, is cascaded to smaller and smaller vortices up to extremely
small motion of about 0.04 mm, where the kinetic energy is converted to heat by viscosity and
disappears. The wavenumbers kl , kv corresponding to l , lv can be introduced by kl D 1=l , kv D

1=lv. From (8.25) and (8.26), the ratio of the length l of the large vortex which is supplied
energy directly from the vehicle and the length lv of the minimum-size vortex generated by the
energy cascade is given by

l

lv
D
kv

kl

D Re3=4; Re D ul

�
: (8.28)

Here Re is the Reynolds number. Generally, the larger the Re, the more unstable the flow
and the more likely it is to be turbulent. In the case of the turbulent flow around the running
vehicle above, Re � 4:5 � 106. According to (8.28), lv should be about 1/100,000 of l , which is
consistent with (8.27).

Kormogorov’s k�5=3 spectrum

Turbulence is ubiquitous and the causes of generation of turbulence vary widely. Some
is generated by a running vehicle as above, some is generated by stirring a spoon in a coffee
cup, some is generated by water flowing rapidly in the water pipe, and some is generated by
the intense tidal current in the sea, and so on. Reflecting such individual situations, the shape
of the energy spectrum of turbulence does not have universal properties that are common to all
turbulence, at least with regard to the low wavenumber k � kl where the fluid motion is directly
excited by external forces.

However, as the energy flows to higher wavenumbers by the cascade process, the memory
of how the energy was supplied at k � kl is gradually lost. As a result, the energy spectrum in the
region where the wavenumber is relatively high will have a universal property, regardless of how
the turbulence is generated. Normally, the Reynolds number Re takes extremely large values in
a turbulent state. In that case, according to (8.28), the wavenumber k � kl directly excited by
external energy supply and the wavenumber k � kv where the cascade stops due to viscosity
are very far apart. Therefore, an intermediate wavenumber region kl � k � kv exists widely
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between the two. In this intermediate region, the memory of how the turbulence is generated
is lost because k � kl , and at the same time, k is not large enough for the effect of viscosity to
be effective because k � kv. An intermediate region with such properties is called the inertial
subrange.

There are only two physical quantities that affect the spectral shape in the inertial subrange:
the wavenumber k of interest and the energy flux " that flows over there per unit time. We
introduce the wavenumber spectrum E.k/ of turbulent motion by

1

2
jvj2 D

Z 1

0

E.k/ dk: (8.29)

If the dimension of each related quantities is represented by [ ],

Œv� D LT �1; Œk� D L�1; ŒE.k/� D L3T �2; Œ"� D L2T �3: (8.30)

From these, it is inferred that E.k/ in the inertial subrange is in the form of

E.k/ D CK"
2=3k�5=3 (8.31)

only by dimensional consideration. This spectrum is called the Kolmogorov’s k�5=3 spectrum,
and has been widely observed in experiments and in-situ observation with sufficiently large Re
(see Fig. 8.6). CK is a dimensionless universal constant called the Kolmogorov constant, which
is known to take a value of about CK D 1:4 � 1:8. (For general knowledge on turbulence in fluid
mechanics, see, for example, [1, 13] and Chapter 13 of [8].)

Figure 8.6: Kolmogorov’s k�5=3 spectrum (reprinted from [5] with permission).

https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-058.jpg&w=170&h=180
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8.4.2 POWER–LAW SPECTRUM OF OCEAN WAVES
Let us try to apply the argument for hydrodynamic turbulence as above to the situation where
waves of various wavenumbers coexist and exchange energy with each other by nonlinear inter-
actions like ocean waves. A state in which many waves coexist and interact with each other is
called wave turbulence or weak turbulence. However, as we will see below, it is not as easy to
derive a Kolmogorov-like power law spectrum for wave turbulence as in the case of fluid dynamic
turbulence above.

Failure of argument based on dimension only
In the case of an ocean wave field in which an infinite number of gravity waves coexist,

the target spectrum for which the power law is sought is the wavenumber spectrum E.k/ which
can be introduced by

�2 D

“
E.k/ dk D

Z
E.k/ dk: (8.32)

Note that the difference between the wavenumber spectrum E.k/ and the vector wavenumber
spectrum E.k/ is important. Since“

E.k/dk D

Z 1

0

�Z 2�

0

E.k/ kd�

�
dk D

Z 1

0

E.k/dk;

�! E.k/ D

Z 2�

0

E.k/ kd�; (8.33)

the rough magnitude relationship between E.k/ and E.k/ is given by

E.k/ � kE.k/: (8.34)

From Œ�� D L, Œk� D L�1, Œdk� D L�2, and from (8.32), the dimensions of E.k/ and E.k/ are
as follows:

ŒE.k/� D L3; ŒE.k/� D L4: (8.35)

Since the energy flux ".k/ flowing through E.k/ in the k space satisfies

@E.k/

@t
C
@".k/

@k
D 0; (8.36)

the dimension of ".k/ is Œ".k/� D T �1ŒE.k/�Œk� D L2T �1. In the case of the Kolmogorov spec-
trum of fluid dynamical turbulence, we can obtain the k�5=3 spectrum immediately by combin-
ing the energy flux " and the wavenumber k to obtain a quantity having the dimension of the
spectrum E.k/. However, in the case of wave turbulence of ocean waves, since

ŒE.k/� D L3; Œ".k/� D L2T �1; Œk� D L�1; (8.37)
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if we try to make a quantity from " and k, having the same dimension as E.k/, " cannot enter,
and it does not work. After all, it seems that we need to discuss beyond the level that relies solely
on dimensions.4

Derivation of power law spectrum

Let us write � a typical time scale of the spectral change caused by nonlinear effects. This
is another time scale that is much longer than the linear time scale estimated by the reciprocal
1=! of the frequency. Evaluating the time derivative of E.k/ using this � in (8.36),

".k/ � ��1E.k/k: (8.38)

If there is a wavenumber region corresponding to the inertial subrange of fluid dynamic turbulece
also for wave turbulence, then " should stay constant (D "0) there.Therefore, if � can be somehow
estimated, we can estimate the form of E.k/ from this equation. And for this purpose we can
use the energy balance equation (8.20).

In the energy balance equation (8.20), among the three source terms, leaving only Snl that
produces energy cascade that we are interested in, and assuming that the wave field is spatially
uniform andE.k/ does not depend on location, the governing equation ofE.k/ becomes simply

dE.k/

dt
D Snl : (8.39)

Since the dimensions of both sides of this equation are equal, the dimension of the coupling
coefficientW1234 in Snl should be L�4T �2, so its magnitude can be estimated asW � k4!2. If
we estimate the magintude of both sides of (8.39) using the expression (8.21) for Snl , E.k/ �
E.k/=k, and above estimate for W , we can get an evaluation for � as follows5:

��1k�1E.k/ �
�
k4!2

� �E.k/
k

�3 �
k�2

� �
!�1

� �
k2
�3
D g1=2k11=2E3

�! ��1
D g1=2k13=2E2: (8.40)

Substituting this into (8.38),

".k/ �
�
g1=2k13=2E2

�
Ek D g1=2k15=2E3: (8.41)

4In fluid dynamic turbulence, the characteristic time scale at each wavenumber k is uniquely determined from the spec-
trum intensity E.k/ and k there. On the other hand, in wave turbulence, at each wavenumber k, there are two largely different
time scales: one is the “linear time scale” determined from the frequency !.k/ and the other is the “nonlinear time scale”
related to the temporal change of E.k/. This difference in situation is the reason why a simple dimensional analysis that has
succeeded in fluid dynamic turbulence does not work in wave turbulence.

5Since ı.k/ becomes 1 when integrated with respect to k, its dimension is equal to Œk��1, and since ı.!/ becomes 1
when integrated with respect to !, its dimension is equal to Œ!��1.
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From this, a power-law spectrum like

E.k/ D "
1=3
0 g�1=6k�5=2 (8.42)

is obtained in the inertial subrange in which ".k/ D "0 holds. From (8.6), when the dispersion
relation is !2 D gk, the wavenumber spectrum E.k/ and the frequency spectrum F.!/ are
related as F.!/ D E.k/ � 2!=g. Therefore, F.!/ corresponding to (8.42) is

F.!/ D "
1=3
0 g�1=6

�
!2

g

��5=2 �
2!

g

�
D 2 "

1=3
0 g4=3!�4: (8.43)

In this way, we can derive a frequency spectrum with the same power law as !�4 often observed
in developed ocean waves [6].

Thus, the power-law spectrum F.!/ / !�4 of ocean surface waves does not contradict
with (the counterpart of ) the Kolmogorov spectrum that is expected when the concept of inertial
subrange of fluid dynamic turbulence is directly applied also to the ocean wave field. However,
in the case of ocean waves, the spectrum width in the wavenumber and frequency spaces is not
so wide as compared to fluid dynmaic turbulence, and it is difficult to be in a situation where the
power law can be clearly detected as in the case of fluid dynamic turbulence shown in Fig. 8.6.
Also, in the above analysis, we have ignored all other source terms such as the wind effect Sin and
the wave breaking effect Sds and have derived F.!/ / !�4 based on the premise that only the
nonlinearity effect Snl works. However, in the real ocean, it is also reported that the wavenumber
region where these three source terms are dominant is not so clearly separated. Therefore, it is
not obvious from the beginning whether there is a wavenumber region to which the concept
of inertial subrange can be applied. In this sense, there may still be room for consideration
in immediately understand the frequency spectrum of the power law F.!/ / !�4 observed
in the actual ocean wave field as having the same origin as the Kolmogorov spectrum of fluid
dynamic turbulence. Not only the problem of the power-law spectrum as above, there still remain
many interesting problems to be solved or clarified in the reseach field of wave turbulence. (For
example, see [10, 11], etc.)

Since the SMB method developed during World War II, research on wave prediction has
made great strides, and today, anyone can know the forecast for the significant wave height, sig-
nificant wave period and wave directions in all sea area of the world from the Internet. Figure 8.7
is downloaded from one of such sites, http://polar.ncep.noaa.gov/waves/. The site dis-
plays the wave forecast obtained using a program package for numerical wave prediction called
WAVEWATCH III developed by the National Center for Environmental Prediction (NCEP)
of the National Ocean and Atmosphere Administration (NOAA). This web page shows the re-
sults of forecast for more than a week (180 h) by an animation, so you can see how an area of
large wave height generated by a storm travels through the ocean.

http://polar.ncep.noaa.gov/waves/
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Figure 8.7: Numerical wave forecast (from http://polar.ncep.noaa.gov/waves/).

COFFEE BREAK: WAVE FORECAST METHOD DEVELOPED
FOR WAR
The averaging procedure that defines the significant wave height is not a mean in the ordinary
sense which is taken over all the individual waves, but it employs a somewhat strange quantity
like themean over only the largest one third.This based on the research of ocean wave forecasting
methods conducted by the research team led by two oceanographers H. U. Sverdrup and W. H.
Munk in the United States during World War II in connection with the military operations.

The human eye seems to tend to focus on the larger waves rather than the smaller ones,
and Sverdrup and Munk found that the mean wave height over the largest one third agrees well
with the wave height estimated by the well-trained observer looking at the sea. From this, the
significant wave heightH1=3 began to be used as a representative value of the wave height. They
first of all introduced clearly defined quantities of H1=3, T1=3 as representative quantities to be
predicted for the field of ocean wave prediction, for which any quantitative method of expression
had not yet been established. Then, by theoretical analysis and organizing observation data that
were accumulated so far in a unified manner, they constructed a framework to predict H1=3

and T1=3 as functions of wind speed, fetch (distance to the upwind coastline) and duration (the
time elapsed since the wind started to blow). This wave forecasting method is called the SMB
method after Sverdrup, Munk, and Bretschneider who later improved it.

The Normandy landing operation by the Allied Forces is well known as an operation that
greatly influenced the outcome of World War II in Europe. It is said that the SMB method is

http://polar.ncep.noaa.gov/waves/
https://www.morganclaypool.com/action/showImage?doi=10.2200/S00963ED1V01Y201910WAV002&iName=master.img-059.jpg&w=180&h=211
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also related to its success. Before the day of the campaign (D-day: June 6, 1944), the sea near
the Dover Strait was heavily roughened by a strong storm. The Germans defending the coast
of Normandy believed that the storm would not settle for several days and there would be no
enemy landing. However, by using the weather forecast and the wave prediction method, the
Allied Forces more accurately predicted the date when the storm would weaken and the date
when the wave height would decrease to the level that landing operation becomes possible. As
a result, it became a surprise attack for the Germans.

Although it is sad, electric and electronic technologies such as radar, transportation means
such as aircraft and rockets, and nuclear research..... nomatter what you think, it is an undeniable
historical fact that various studies havemade great strides out of necessity every time a war occurs
that many human beings kill each other for life.
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A P P E N D I X A

Conservation Law in 3D
In Chapter 1, we discussed the conservation law assuming that the space is 1D.

This appendix introduces how the flux is defined and how the conservation law is
modified when the space becomes 3D.

A.1 FLUX DENSITY VECTOR

As discussed in Section 2.2, the driving force that changes the temperature distribution of wire
in time is the heat flux, that is, the flow of heat from a place with high temperature to the place
with low temperature. Not only the case of temperature of a wire, generally the flux of a physical
quantity is essentially important when considering how the spatial distribution of the physical
quantity changes in time. If the space is 1D like the heat flow in the wire, the heat flux is defined
as the amount of heat that passes through the point of interest x per second, so the unit of heat
flux is Joule/second. However, the flux in a continuous medium spread in a 3D space is not that
simple.

The flux of a certain physical quantity P that takes a scalar value at a point x in a 3D
space can be expressed by indicating the intensity and the direction of the flow. The flux at a
certain point can be expressed by a single vector by linking the intensity and the direction of
the flux to the magnitude and the direction of the vector, respectively. Then, with what kind
of quantity should we express the “intensity of flux” concretely? In the case of heat flux in the
wire, it was only necessary to consider the amount of heat ( Joule) passing through the point x
per second. If we try to think about the same thing at a certain point in 3D space, we assume a
plane perpendicular to the direction of heat flow at that point, opening a small window there, and
measuring the amount of heat passing through that small window. However, since the amount
of heat passing through the window depends on the area of the window, the area of the window
must be normalized. Therefore, in order to rationally express the intensity of the flow of the
physical quantity P at a point in 3D space, the amount of P that passes through a window of
unit area perpendicular to the flow direction per unit time is used. A vector that has the “flow
intensity” of P thus defined as the magnitude and has the direction of the flow of P as the
direction is called the flux density vector of P . When the unit of P is denoted as

J
, the unit

of the flux density vector is
J
=m2 s.
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A.2 CONSERVATION LAW IN INTEGRAL FORM
Take an arbitrary 3D region V fixed in space, and consider the conservation law of a certain
physical quantity P there. Let the unit of P be

J
, and let the density and the flux density of

P be �.x; t / Œ
J
=m3� and q.x; t /Œ

J
=m2 s�, respectively. Since there is an inflow and outflow

of P through the surface S of V , the total amount of P in V is not constant in time but will
constantly change. The conservation law of P requires that the increment of P in V that occurs
during a certain time is equal to the amount of net inflow through the surface S during that
time. By calculating separately the increment of P in V and the net inflow of P through S and
equating them, we can derive a formula that expresses the conservation law of P as follows.

The total amount of P in V at time t is given by the volume integral

M.t/ D

•
V

�.x; t / dV; (A.1)

so its increment per unit time is given by1

dM.t/

dt
D

•
V

@�.x; t /

@t
dV: (A.2)

On the other hand, when the flux density of P is q.x; t /, the amount of P flowing out through
the surface element dS per unit time is q � n dS , where n being the outward unit normal vector
of dS . Therefore, the total amount of P flowing into V through the entire surface S per unit
time is given by the surface integral

�

“
S

q � n dS: (A.3)

By equating (A.2) and (A.3), we obtain the conservation law ofP in the integral form as follows:•
V

@�

@t
dV C

“
S

q � n dS D 0: (A.4)

This is the 3D counterpart of the 1D conservation law (1.30).

A.3 CONSERVATION LAW OF DIFFERENTIAL FORM
The following Gauss’s divergence theorem is well known in vector analysis. That is, let V be
an arbitrary bounded closed region in 3D space, S be the boundary (i.e., the surface) of V , n be
the outward unit normal vector of S , and u.x/ be a smooth vector field defined in V , then the
divergence theorem teaches us that•

V

div u dV D

“
S

u � n dS: (A.5)

1Since the integration region V does not change with time in this case, the time derivative can simply be put into the
integral.
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Here, div u is a scalar field defined for a vector field

u.x/ D u1.x; y; z/i C u2.x; y; z/j C u3.x; y; z/k (A.6)

by

div u �
@u1

@x
C
@u2

@y
C
@u3

@z
; (A.7)

and is called the divergence of u. If we introduce the differential operator called nabla by

r �
@

@x
i C

@

@y
j C

@

@z
k; (A.8)

div u can also be written as r � u.
By converting the surface integral of the conservation law of integral form (A.4) into a

volume integral using the divergence theorem and combining the two volume integrals into one,
we obtain •

V

�
@�

@t
C div q

�
dV D 0: (A.9)

In order for this to hold for any volume region V , the integrand must be 0 at any point in V ,
which yields the following conservation law of P in differential form:

@�

@t
C div q D 0: (A.10)

This is the 3D counterpart of the 1D conservation law in the differential form (1.10).
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A P P E N D I X B

System of Simultaneous Wave
Equations

For example, when sound wave is transmitted, the pressure, density, flow veloc-
ity, etc. of the air change simultaneously. In this appendix, we will consider how to
handle this type of wave that simultaneously conveys changes in multiple physical
quantities. We also explain that this type of wave can be reduced to a single wave
equation as described in Chapter 1 under the situation called “simple wave.”

B.1 HYPERBOLIC EQUATION
In Chapter 1, we treated the wave equation ut C c.u/ ux D 0 for a single physical quantity
u.x; t/. The natural extension of this to the case where changes in multiple physical quantities
are transmitted simultaneously with a wave would be

@u

@t
C A.u/

@u

@x
D 0; (B.1)

where u.x; t/ D t .u1.x; t/; : : : ; un.x; t// is a column vector consisting of n dependent variables
(tu denotes the transpose of u), and A.u/ is an n � n square matrix. A.u/ generally depends on
u, but does not include the derivative of u. (B.1) is linear in u when A does not depend on u, but
becomes nonlinear when it depends on u.1 For example, if there are two dependent variables,
the concrete expression of (B.1) becomes

@u1

@t
C a11.u1; u2/

@u1

@x
C a12.u1; u2/

@u2

@x
D 0; (B.2a)

@u2

@t
C a21.u1; u2/

@u1

@x
C a22.u1; u2/

@u2

@x
D 0: (B.2b)

In Section 1.2.2, when we obtained an Equation (1.10) including two quantities, the
density � and the flux q, from the conservation law, we mentioned that there are two ways as
follows to make the problem “closed,” that is, to convert the problem into the situation where
the number of equations and the number of unknowns are equal, (i) deriving a new equation

1(B.1) is nonlinear when A depends on u, but it is linear with respect to the derivative ut , ux . A partial differential
equation that is linear with respect to the highest-order derivative like (B.1) is called a “quasi-linear PDE.”
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for @q=@t from another conservation law or some physical laws, or (ii) assuming an equation
of state like q D q.�/. In Section 1.2, the method of (ii) is adopted and a single wave equation
(1.16) directly obtained from (1.10), but when the method (i) is adopted here we often end up
with a system of simultaneous equations such as (B.1).

In the water wave problem, the surface displacement �.x; t/ and the horizontal flow ve-
locity u.x; t/ are governed by the long wave equation,2

@�

@t
C
@Œ.hC �/u�

@x
D 0;

@u

@t
C u

@u

@x
C g

@�

@x
D 0; (B.3)

when the wavelength is much longer than the water depth h. This system of equations can be
cast into the form of (B.1) by putting

u D

�
�

u

�
; A D

�
u hC �

g u

�
: (B.4)

In the motion of ideal gas, if there is no dissipation such as viscosity or heat conduction and
hence the entropy can be assumed to be constant, the basic equations are given by

@�

@t
C u

@�

@x
C �

@u

@x
D 0;

@u

@t
C u

@u

@x
C
c2

�

@�

@x
D 0; (B.5)

where � is density, u is flow velocity, c is sound speed given by c2 D p=� with p is pressure,
 is the ratio cp=cv of specific heat at constant pressure cp to that at constant volume cv, and
 � 1:4 in the air. This can also be cast into the form (B.1) by putting

u D

�
�

u

�
; A D

�
u �

c2=� u:

�
: (B.6)

In (B.1), when the n eigenvalues �.1/; : : : ; �.n/ of A are all real and the corresponding
eigenvectors are linearly independent, (B.1) is called hyperbolic quasi-linear PDEs. And then,
the curve C .i/ on the x-t plane given by dx

dt
D �.i/ .i D 1; 2; : : : ; n/ is called the (nth) char-

acteristic curve.3 Since dx
dt

expresses velocity, so the definition of characteristic curve dx
dt
D �

means that the eigenvalue � of A corresponds to the velocity at which the characteristic curve is
transmitted. In the case of long wave equation (B.3), the two eigenvalues of A are given by

�˙ D u˙
p
g.hC �/ (B.7)

which are both real and different with each other, so the corresponding two eigenvalues are
always linearly independent, so this system is a hyperbolic quasi-linear PDSs. Similarly, in the
case of the ideal gas equation (B.5), the eigenvalues of A are given by two different real numbers
�˙ D u˙ c, so this system is also hyperbolic.

2For the derivation of this equation, see Appendix F.
3The characteristic curve defined in this way matches the characteristic curve introduced in Chapter 1 when n D 1.
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B.2 MECHANISM OF TEMPORAL EVOLUTION OF
HYPERBOLIC SYSTEM

Let l .i/ be the left eigenvector4 corresponding to the eigenvalue �.i/ of A and x D X .i/.t/ be
the parametric representation of the corresponding characteristic curve C .i/ W dx=dt D �.i/.

Taking the product of (B.1) and l .i/, and using l .i/A D �.i/l .i/, we obtain

l .i/

�
@u

@t
C A

@u

@x

�
D l .i/

�
@

@t
C �.i/ @

@x

�
u D 0: (B.8)

In the same way as (1.18), the time derivative d=dt along the characteristic curve C .i/ is given
by

d

dt
D

@

@t
C
dX .i/.t/

dt

@

@x
D

@

@t
C �.i/ @

@x
; (B.9)

therefore (B.8) can be written as

l .i/du

dt
D 0 along C .i/: (B.10)

This ordinary differential equation is called the characteristic form. If we write l .i/ as l .i/ D

.l
.i/
1 ; : : : ; l

.i/
n / and the small change du occurring in short time dt as du D .du1; : : : ; dun/,

then (B.10) can be written as

l
.i/
1 du1 C l

.i/
2 du2 C � � � C l

.i/
n dun D 0 along C .i/: (B.11)

Thus, a characteristic form defines a linear relationship between the changes of n dependent
variables alongC .i/. Since the coefficient .l .i/

1 ; : : : ; l
.i/
n / are different for each characteristic curve,

the different characteristic curves require different linear relationships among dui .
As discussed in Chapter 1, in the case of a single wave equation

@u

@t
C c.u/

@u

@x
D 0; (B.12)

there is only one kind of characteristic curves, and the waveform at an arbitrary time is deter-
mined by a constant value of the dependent variable u which is carried along the characteristic
curves. Then how does the solution u.x; t/ be determined for a system of hyperbolic equations
withmultiple dependent variables? To understand themechanism, assume that we know u.x; t0/

at all point x at some time t0, and let’s think about how u at point P a short time �t later is
determined by looking at Fig. B.1. For simplicity, we assume that n D 2 here. At time t0, two
characteristic curves are radiated from each x, of which two pass through the point P at t0 C�t .
The characteristic forms (B.10) for these two give conditions for the increment du, which de-
termine u at P as follows.

4A non-zero vector l that satisfies lA D � l is called the left eigenvector of A. Taking the transpose of both sides yields
t At l D � t l . This shows that if we find the ordinary eigenvector (right eigenvector) for the transpose of A first and transpose
it, then we can get the left eigenvector of A to the same eigenvalue.
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P

C 
(1)

Q1 Q2

C 
(2)

t0

t0 + ∆t

x

t

Figure B.1: Mechanism of determining the solution of hyperbolic system.

LetQ1 andQ2 be the positions of two characteristic curvesC .1/ andC .2/ that reach point
P at time t0 C�t at time t0, respectively. If �t is sufficiently small and du=dt of (B.10) can be
evaluated by a forward difference, the characteristic forms along C .1/ and C .2/ can be written,
respectively, as

l .1/.Q1/ fu.P / � u.Q1/g D 0; (B.13a)
l .2/.Q2/ fu.P / � u.Q2/g D 0: (B.13b)

Here, the unknown quantities are only u.P /, and the rest are all known quantities that are
evaluated at time t0. (B.13) gives the system of linear equations Lu.P / D c for u.P /, where
L is a 2 � 2 matrix with l .i/ .i D 1; 2/ as the i th row vector, and c is a column vector with
l .i/.Qi /u.Qi / .i D 1; 2/ as the i th component. The linear independence of the eigenvectors
included in the definition of “hyperbolicity” guarantees that the coefficient matrix L is non-
singular, so u.P / is uniquely determined. By repeating this procedure in time, u.x; t/ at an
arbitrary time is determined when the initial condition u.x; 0/ is specified. In the above, we
treated the case of n D 2 for simplicity. However, there is no essential difference in the process in
which u.x; t/ is determined in the case of general n. In this case, n different kinds of characteristic
curves C .i/ requiring n different linear relationships for the increment du propagate at each
characteristic velocity �.i/, and their intersection at one point P:.x; t/ determines the value of
u.x; t/ there.

From the process of temporal evolution described above, it can be seen that the solution
u.P / at the point P depends only on the triangular part between the fastest CC and the slowest
C� among the n characteristic curves that reach P (see Fig. B.2).This region is called the domain
of dependence of P. Even if a point in the xt-plane is a point in the past viewed from P, if it is
outside the domain of dependence, no matter how we change u at that point, the value of u at
P is not affected. On the other hand, the wedge-shaped region between CC and C� emanating
from P as shown in Fig. B.2 is the region which is affected by the event at P, and is called the
range of influence of P.
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P

C + C –

x

t

Domain of Dependence

Range of Influence

Figure B.2: Domain of dependence and range of influence.

B.3 RIEMANN INVARIANT
If (B.1) is linear, that is, A is a constant matrix independent of u, its left eigenvector l .i/ is also
a constant vector. Then, if we introduce R.i/ by R.i/ D l .i/u, (B.10) becomes

dR.i/

dt
D 0 along C .i/

W
dX .i/

dt
D �.i/; (B.14)

and R.i/ is kept constant along the characteristic curve C .i/.
On the other hand, in the nonlinear case, A, and hence l .i/ depends on u and changes

with u. In the case of n � 3, there is generally no integrating factor that converts l .i/du to a
total derivative of a certain quantity, and therefore it is not possible to rewrite (B.10) to the
form (B.14). However, the existence of such an integrating factor is always guaranteed when
n D 2 [1], so there always exist R.i/ such that

dR.i/

dt
D 0 along C .i/

W
dX .i/

dt
D �.i/; .i D 1; 2/: (B.15)

Such a function of u that takes a constant value along the characteristic curve is called the
Riemann invariant.

EXAMPLE 1: RIEMANN INVARIANT FOR LONG WAVE AND IDEAL GAS
1. Find the Riemann invariants for the long wave equation (B.3).

2. Find the Riemann invariants for the ideal gas equation (B.5).
[Answer]

1. In the case of long wave equations (B.3) and (B.4),

u D

�
�

u

�
; �˙ D u˙

p
g.hC �/; l˙ D .

p
g;˙

p
hC �/; (B.16)

and the characteristic form is given by
p
g d�˙

p
hC � du D 0 along C˙ W

dx

dt
D u˙

p
g.hC �/: (B.17)
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Bymultiplying the integrating factor 1=
p
hC �, (B.17) can be written in a total differential

form as r
g

hC �
d�˙ du D 0 �! d

�
2
p
g.hC �/˙ u

�
D 0: (B.18)

From this, the Riemann invariants along the two characteristic curves C˙ are given by

R˙ D 2
p
g.hC �/˙ u: (B.19)

2. In the case of the ideal gas equations (B.5) and (B.6), u, the eigenvalues, and the left
eigenvectors of A are given by

u D

�
�

u

�
; �˙ D u˙ c; l˙ D .c;˙�/: (B.20)

Therefore, the characteristic form becomes

c d�˙ � du D 0 along C˙ W
dx

dt
D u˙ c: (B.21)

These two types of waves (˙) represent sound waves propagating in the positive and neg-
ative x directions. In an ideal gas with constant entropy, the pressure is expressed as a
function of only � as p D a� , where a is a constant determined by the entropy and  is
the adiabatic constant (i.e., ratio of the specific heats). In this case, the sound speed c is
also a function only of � given by

c2
D
dp

d�
D a��1

�
D
p

�

�
: (B.22)

Dividing both sides of (B.21) by � and introducing a function r.�/ by

r.�/ �

Z � c.�/

�
d�; (B.23)

the characteristic form (B.21) becomes

dr ˙ du D 0 �! d.r ˙ u/ D 0; (B.24)

indicating that the quantity defined by R˙ D r ˙ u is constant along C˙. By differenti-
ating (B.22),

2cdc D
. � 1/c2

�
d� �! r D

Z
c

�
d� D

Z
2

 � 1
dc D

2c.�/

 � 1
: (B.25)

From this the Riemann invariant R˙ along C˙ can be written as

R˙ D r ˙ u D
2c.�/

 � 1
˙ u: (B.26)

|
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B.4 SIMPLE WAVE
As discussed above, in hyperbolic waves, there are n kinds of characteristic curves that carry
the different linear relationships l .i/du D 0 .i D 1; : : : ; n/ between the changes of n dependent
variables at the speed �.i/. And the intersection of these characteristic curves determines u.x; t/.

When the initial disturbance is spatially localized, the waves (signals) emitted from it is
gradually divided into n groups over time according to the speed of the characteristic curves (see
Fig. B.3). If the fastest group of characteristic curves is written as CC, the observer in the far
right xR of the initial disturbance will remain quiet without disturbance until the time when
CC

A arrives. For the first non-zero u that is observed at xR, only CC out of the n characteristic
curves which intersect there to determine u there emanates from the disturbance region, while
the remaining .n � 1/ of them all emanate from the undisturbed uniform state. In this sense,
for the observer at xR, the first signal from the initial disturbance will be conveyed exclusively
by CC.

CB
+

CB
–

CA
–

CA
+

C – Simple Wave
C + Simple Wave

xxR

t

B A
Initial Disturbance

Figure B.3: Propagation of localized initial disturbance (n D 2).

The region and also the type of wave that is observed in the xt-space for which, of the n
characteristic curves that determine u.x; t/, .n � 1/ are all emanated from the undisturbed state
and only C .i/ carries information of the initial disturbance as above is called the simple wave
(of the ithmode). It is mathematically proved that the next to the undisturbed region is always
a simple wave region.

In addition, although not described in detail here, in the simple wave region of i th mode,
the fact that all characteristic curves other than C .i/ originate from the undisturbed state gives
.n � 1/ algebraic functional relationships between n dependent variables uj .j D 1; : : : ; n/, and
by using themwe can represent all other variables algebraically with just one variable, for example
u1. From this, in the simple wave region, it is possible to reduce the fundamental system of
Eq. (B.1) to a single wave equation of the form treated in Chapter 1 regardless of the number
of dependent variables n. In the following example, let’s confirm this by taking the long wave
equation as an example.
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EXAMPLE 2: SIMPLE WAVE FOR LONG WAVE EQUATION
For the long wave equation (B.3), find a single wave equation containing only �.x; t/ that holds
in the simple wave region corresponding to the CC mode.

[Answer]
Since all C� passing through this region start from the undisturbed region, the Riemann

invariant R� they carry is a constant value determined by the undisturbed state (i.e., � D 0,
u D 0). Therefore, in this region,

R� D 2
p
g.hC �/ � u D 2

p
gh (=constant); (B.27)

and u can be expressed by � as

u D 2
p
g.hC �/ � 2

p
gh: (B.28)

On the other hand, RC D 2
p
g.hC �/C u is constant along CC. Substituting (B.28) into this

gives RC D 4
p
g.hC �/ � 2

p
gh D constant, that is, � D constant, and so is u also constant

from (B.28) along each CC.5 And from (B.16) and (B.28), the slope of CC (i.e., the wave prop-
agation speed) �C is given by

�C D uC
p
g.hC �/ D 3

p
g.hC �/ � 2

p
gh: (B.29)

As a result, in the CC simple wave region, a constant value of � is transmitted at the speed
�C given by (B.29), and the following equation is obtained as a single nonlinear wave equation
expressing this fact:

@�

@t
C c.�/

@�

@x
D 0; c.�/ D 3

p
g.hC �/ � 2

p
gh: (B.30)

Of course, the corresponding wave equation for u can also be derived.
|
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When a long wave such as a tsunami generated far away is transmitted to an undisturbed
region with a depth h, the water surface displacement �.x; t/ is considered to follow (B.30). The
propagation speed of tsunami is often said to be

p
gh, but a more accurate evaluation that takes

into account nonlinear effects is c.�/ D 3
p
g.hC �/ � 2

p
gh as given by (B.30). This converges

to
p
gh at the limit of �=h! 0. The wave propagation velocity c.�/ is an increasing function of

�, so the higher the water surface, the faster it propagates. As a result, as learned in Chapter 1,
5It should be noted that the meaning of “constant” differs between “R� is constant” and “RC is constant.” In the CC

simple wave region, all C� are emanated from undisturbed state, so the value of R� carried by C� are all equal. Therefore,
R� takes a constant value throughout this simple wave region regardless of .x; t/. In contrast, RC is constant along each
CC, but different CC carry different values of RC.
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if there is a part of @�=@x < 0 in the initial waveform �0.x/, the slope of that part gradually
becomes steeper with time, and the slope diverges infinitely within a finite time. On the shallow
coast, we can see the swells that are approaching the shore gradually lean forward and break.
The nonlinearity also contributes to such a familiar phenomenon.

For more detailed information on the overall contents of this Appendix, refer to [2, 3],
for example.
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A P P E N D I X C

Summary of Fourier Analysis
In analyzing wave phenomena, Fourier analysis is an indispensable tool. Here we

summarize the minimum knowledge about it. The solution of the diffusion equation
used in Chapter 2 is also given at the end of this Appendix as an application of
Fourier analysis.

C.1 FOURIER SERIES
When f .t/ is a periodic function of period T and f .t/, and f 0.t/ are both continuous, it is
known that f .t/ can be expressed as

f .t/ D
1

2
a0 C

1X
kD1

.ak cos!kt C bk sin!kt / ; !k D .2�=T /k .k D 1; 2; : : :/; (C.1)

by using appropriate coefficients ak and bk . The cos!kt and sin!kt appearing here represents
a harmonic oscillation that oscillates k times during one period T of f .t/. Thus, (C.1) indicates
that an arbitrary periodic function with period T can be expressed as a combination of harmonic
oscillations with angular frequency that is an integer multiple of 2�=T .

When m and n are positive integers, the following relations hold:Z �

��

cosmx dx D
Z �

��

sinmx dx D 0;
Z �

��

cosmx sinnx dx D 0;Z �

��

cosmx cosnx dx D
Z �

��

sinmx sinnx dx D � ımn; (C.2)

where ımn is the Kronecker delta defined by

ımn D

(
1 .m D n/;

0 .m ¤ n/:
(C.3)

(C.2) is called the “orthogonality” of trigonometric functions. Multiplying cos!kt or sin!kt on
both sides of (C.1), integrating with respect to t for one period T , and using change of variables
x D

�
2�
T

�
t and the orthogonality (C.2), we can see that the coefficients ak and bk in (C.1) must
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be given by

ak D
2

T

Z T

0

f .t/ cos!kt dt .k D 0; 1; 2; : : :/; (C.4a)

bk D
2

T

Z T

0

f .t/ sin!kt dt .k D 1; 2; : : :/: (C.4b)

These are called the Fourier coefficients of f .t/, and such an infinite series on the right side of
(C.1) that has these ak and bk as coefficients is called the Fourier series of f .t/.

If we use the relation

cos � D 1

2

�
ei�
C e�i�

�
; sin � D 1

2i

�
ei�
� e�i�

�
; (C.5)

which are immediately obtained from Euler’s formula ei�
D cos � C i sin � , (C.1) and (C.4)

can also be expressed in a complex form as follows:

f .t/ D

1X
kD�1

ck ei!k t ; ck D
1

T

Z T

0

f .t/ e�i!k t dt .k D 0;˙1;˙2; : : :/: (C.6)

For arbitrary f .t/ which is piecewise continuous in 0 � t � T , it can be shown that

1

T

Z T

0

jf .t/j2 dt D
1

4
a2

0 C
1

2

1X
kD1

�
a2

k C b
2
k

�
D

1X
kD�1

jckj
2 (C.7)

holds. This is called Parseval’s identity. The quantity on the left side of (C.7) often means the
energy density of the signal f .t/, that is, the average energy contained per unit time. Consid-
ering that the subscript k of the Fourier coefficients is an index that distinguishes frequencies,
(C.7) represents the energy density of f .t/ in the actual t space as a sum of the energy of each
frequency component. In this sense, 1

2

�
a2

k
C b2

k

�
and jckj

2 are called energy spectrum or spec-
tral intensity.

From (C.7), it can be seen that

ak; bk ! 0 .k !1/; ck ! 0 .jkj ! 1/; (C.8)

for arbitrary piecewise continuous function f .t/. This is known as Riemann–Lebesgue lemma.

C.2 FOURIER TRANSFORM
By considering a non-periodic function as a “periodic function of period 1,” we can extend
the above results for a periodic function to a non-periodic function. The details are left to other
textbooks, and only the basic results are shown here.
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If f .t/ is smooth in any finite interval and absolutely integrable, that is,Z 1

�1

jf .t/j dt <1, then

f .t/ D
1

2�

Z 1

�1

�Z 1

�1

f .t 0/e�i!t 0

dt 0
�

ei!t d! (C.9)

holds. This is called Fourier’s integral theorem. If the Fourier transform F.!/ of f .t/ is in-
troduced by

F.!/ D
1
p
2�

Z 1

�1

f .t/ e�i!t dt; (C.10)

(C.9) can be written as
f .t/ D

1
p
2�

Z 1

�1

F.!/ ei!t d!: (C.11)

Note the symmetry of the representation for f .t/ and F.!/. This can also be written in real
form as follows:

f .t/ D

Z 1

0

fA.!/ cos!t C B.!/ sin!tg d!; (C.12)

A.!/ D
1

�

Z 1

�1

f .t/ cos!t dt; B.!/ D
1

�

Z 1

�1

f .t/ sin!t dt: (C.13)

A periodic function f .t/ of period T can be expressed as a superposition of harmonic
oscillations with discrete frequency at a constant interval�! D 2�=T as shown in (C.1). On the
other hand, to represent a non-periodic function (i.e., period1), all the continuous frequencies
! are required, as indicated by (C.11) and (C.12).

For Fourier transforms, the equationZ 1

�1

jf .t/j2dt D

Z 1

�1

jF.!/j2 d! (C.14)

holds, corresponding to Parseval’s identity (C.7) for the Fourier series, and is called Plancherel’s
theorem. This expresses the total energy (left side) of f .t/ as an integral (right side) in the
frequency ! space, and gives the basis of the concept of frequency spectrum.

C.3 SOLUTION OF THE DIFFUSION EQUATION
In Chapter 2, we introduced the solution (2.25) of the initial value problem of the diffusion
equation in relation to the solution of the initial value problem of the Burgers equation. Here,
let’s obtain the solution of the initial value problem of the diffusion equation

@v.x; t/

@t
D �

@2v.x; t/

@x2
; v.x; 0/ D v0.x/; .�1 < x <1/; (C.15)
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using the knowledge of Fourier transform.

First, we will summarize the basic properties of the Fourier transform required for that
purpose. Let F.k/ and G.k/ be the Fourier transforms of the function f .x/ and g.x/, respec-
tively. Then the following properties hold.

(1) F
�
d

dx
f .x/

�
D ikF.k/.

(2) If the convolution .f � g/.x/ of f .x/ and g.x/ is defined by

.f � g/.x/ �

Z 1

�1

f .x � x0/g.x0/dx0, then F Œ.f � g/.x/� D
p
2� F.k/G.k/.

(3) F
h
e�ax2

i
D

1
p
2a

e�k2=4a .a > 0/.

Take the Fourier transform of (C.15) with respect to x. If we write the Fourier transform
of v.x; t/ and v0.x/ with respect to x as V.k; t/ and V0.k/, respectively,

@V.k; t/

@t
D ��k2 V.k; t/; V .k; 0/ D V0.k/ �! V.k; t/ D V0.k/ e��k2t : (C.16)

Considering the property (3) above, G.k; t/ WD e��k2t that appears here is the Fourier
transform of g.x; t/ D e�.x2=4�t/=

p
2�t . Therefore, the result shown in (C.16) means that the

Fourier transform V.k; t/ of v.x; t/ is given as the product of the Fourier transform V0.k/ of
v0.x/ and the Fourier transform G.k; t/ of g.x; t/. Using property (2) above, this means that
v.x; t/ is a convolution of v0.x/ and g.x; t/, hence we can obtain the following expression for
the solution v.x; t/:

v.x; t/ D
1

p
4��t

Z 1

�1

v0.x
0/ exp

�
�
.x � x0/2

4�t

�
dx0: (C.17)
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A P P E N D I X D

Derivation of Governing
Equations for Water Waves

This appendix introduces the minimum knowledge on fluid mechanics behind
the governing equations (3.27) for water waves for readers who have not studied
fluid mechanics.

D.1 MASS CONSERVATION LAW
Let �.x; t /, v.x; t /, and p.x; t / be the density, velocity, and pressure of fluid at position x and
time t , respectively. Let’s consider the conservation of mass, focusing on a certain region V in
the fluid. The increase in mass per unit time in V is given by

d

dt

•
V

�.x; t / dV: (D.1)

On the other hand, the amount of mass flowing into V through the surface S of V per unit time
is given by

�

“
S

�v � n dS; (D.2)

where n is the outward unit normal to S . (D.1) and (D.2) must be equal unless the fluid suddenly
disappears or is created from nothing. Therefore,

d

dt

•
V

�.x; t / dV D �

“
�v � n dS: (D.3)

Here, using that V is a fixed region and does not depend on time, and converting the surface
integral to a volume integral by the divergence theorem (A.5), we obtain•

V

�
@�

@t
C div .�v/

�
dV D 0: (D.4)

Since the region of interest V is arbitrary,
@�

@t
C div .�v/ D 0 (D.5)

must hold everywhere in the fluid. This is called the continuity equation in fluid mechanics and
physically represents mass conservation.
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D.2 EQUATION OF MOTION
Next, let us consider the conservation of momentum, that is, the equation of motion. As in the
previous section, focus on an arbitrary region V in the fluid. The change in momentum in V per
unit time is given by

d

dt

•
V

� v dV: (D.6)

Newton’s equation of motionma D F (mass � accelerationD force) implies that the force gives
the rate of increase of momentum. Therefore, one cause of the momentum increase (D.6) in V
is the force acting on the fluid in V .

There are two types of forces acting on the fluid. One is the “body force” that acts directly
on the mass (or volume) of the fluid, such as gravity, and the other is the “surface force” that the
surrounding fluid exerts on the fluid in V through the surface S of V , such as pressure. As the
body force, we normally consider the force Fg from gravity given by

Fg D

•
V

� g dV; (D.7)

where g D .0; 0;�g/ is the gravitational acceleration vector pointing vertically downward. On
the other hand, in a motion where the effect of viscosity is negligible such as in water waves, the
surface force consists only of the contribution Fp from pressure p and is given by

Fp D �

“
S

p n dS: (D.8)

In addition to the these forces, there is another factor that increases the momentum in V .
It is the inflow of external fluid to V through S . Since V is a region fixed in the space, the fluid
enters and exits as the fluid moves. The increment in momentum per unit time associated with
this inflow and outflow is given by

�

“
S

.�v/ v � n dS: (D.9)

Combining all of these, the conservation law of momentum is expressed as

d

dt

•
V

� v dV D

•
V

� g dV �

“
S

p n dS �

“
S

.�v/ v � n dS: (D.10)

Here, if we convert the surface integral to a volume integral using the divergence theorem and
write the i component (i D 1; 2; 3) of the vector equation, it becomes•

V

�
@.� vi /

@t
C
@.� vi vj /

@xj

�
dV D

•
V

�
�
@p

@xi

C � gi

�
dV: (D.11)
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Rearranging the integrand on the left side by using the continuity equation (D.5) and consid-
ering that the region V is arbitrary, we obtain

@vi

@t
C vj

@vi

@xj

D �
1

�

@p

@xi

C gi ; (D.12)

or in vector form
@v

@t
C .v � r/v D �

1

�
rp C g; (D.13)

which must hold at any point in the fluid. This is the equation of motion that governs the fluid
motion when the effect of viscosity is not taken into account, and is called the Euler equation.1
By using the identity

.v � r/v D r

�
1

2
v2

�
� v � .r � v/; (D.14)

g D �r.gz/, and the fact that � can be treated as a constant for water, (D.13) can also be written
as

@v

@t
D �r

�
p

�
C
1

2
v2
C gz

�
C v �!; (D.15)

where ! is a vector defined by ! D r � v and is called vorticity.

D.3 LAGRANGIAN DERIVATIVE
Let F.x; t / be a field of some physical quantity possessed by the fluid such as density and pres-
sure. We can know the temporal rate of change of F at a certain point x by the partial derivative
@F.x; t /=@t with respect to t . However, if the velocity at the point x is not zero, different fluid
particles pass through this point one after another, so the partial derivative with fixed position
is not the rate of change that a same fluid particle feels.

Then how can the rate of change perceived by a same fluid particle be evaluated? Suppose
that we focus on the fluid particle which is at x at time t . The value of the physical quantity
that this fluid particle has now is F.x; t /. When the velocity field is v.x; t / D .u; v; w/, the
small displacement �x of this fluid particle during a short time �t is given by �x D v�t D

.u�t; v�t; w�t/. Therefore, the change in F felt by the same fluid particle �F is given by

�F D F.x C v�t; t C�t/ � F.x; t /

D F.x C u�t; y C v�t; z C w�t; t C�t/ � F.x; y; z; t/

D
@F

@x
u�t C

@F

@y
v�t C

@F

@z
w�t C

@F

@t
�t

D �t

�
@F

@t
C u

@F

@x
C v

@F

@y
C w

@F

@z

�
; (D.16)

1When the effect of viscosity is taken into account, a term .�=�/r2v is added on the right side, where � is a material
constant called viscosity coefficient. The equation with this viscosity term added to the Euler equation is called the Navier–
Stokes equation and is the most important equation in fluid mechanics.
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therefore, the rate of change of F felt by the same fluid particle is given by

�F

�t
D
@F

@t
C u

@F

@x
C v

@F

@y
C w

@F

@z
D

�
@

@t
C v � r

�
F: (D.17)

For an arbitrary physical quantity, when evaluating the rate of change felt by a fixed fluid particle,
a differential operation consisting of a combination of temporal and spatial partial derivatives as

D

Dt
D

@

@t
C .v � r/ (D.18)

appears, and is called the material derivative or the Lagrangian derivative. The first term of
the Lagrangian derivative is due to the temporal nonstationarity of the field, and the second
term is due to the spatial nonuniformity of the field.

Using the Lagrangian derivative, (D.5) can be written as

D�

Dt
C � div v D 0: (D.19)

In liquid such as water, it is usually allowed to assume that the density � of fluid particle does not
change, that is, D�

Dt
D 0 holds. Such a fluid is called an incompressible fluid. For the velocity

field v.x; t / of an incompressible fluid,

div v D 0 (D.20)

always holds.

D.4 KELVIN’S CIRCULATION THEOREM
When v is the velocity field, C is any simple closed curve in the fluid domain, and dr is line
element of C , the line integral

� D

I
C

v � dr (D.21)

is called the circulation along C . Using Stokes’ theorem in vector analysis, this can also be
written as

� D

I
C

v � dr D

“
S

.r � v/ � n dS; (D.22)

where S is an arbitrary surface in the fluid region bounded by C , and n is its unit normal vector.2
When C is a material closed curve, that is, a closed curve that moves with the fluid par-

ticles, Kelvin’s circulation theorem
D

Dt

I
C

v � dr D 0 (D.23)

2Here, the fluid region is assumed to be simply connected. Also, when using Stokes’ theorem, the direction of n and the
direction of going around C are linked to each other in the “right-hand screw relationship.”
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holds in the situation like fluid motion in water waves where the following three assumptions
hold: (1) the fluid is inviscid, (2) external body force is conservative force like gravity, and (3)
density � is constant. The circulation along a material closed curve is conserved if these assump-
tions hold. According to (D.22), (D.23) can also be written as

D

Dt

“
S

! � n dS D 0: (D.24)

(D.23) can be proved as follows.

D�

Dt
D

D

Dt

I
C

v � dr D

I
C

Dv

Dt
� dr C

I
C

v �
Ddr

Dt
: (D.25)

If the velocity in the line element dr is the same everywhere, dr simply translates at this velocity
and does not change in time. dr changes over time because of the difference in velocity. If dv

is the difference in velocity at both ends of dr , the change of dr per unit time, i.e.,Ddr=Dt is
given by dv itself. Therefore, the second term on the rightmost side of (D.25) can be rewritten
as I

C

v �
Ddr

Dt
D

I
C

v � dv D

I
C

d

�
1

2
v2

�
: (D.26)

Considering that C is a closed curve and that v2 D jvj2 is a single-valued function of space, this
term is always 0.

Using the Lagrangian derivative D
Dt

, and considering that � is constant and g D r.�gz/,
the Euler equation (D.13) can be written as follows:

Dv

Dt
D �r

�
p

�
C gz

�
: (D.27)

Inserting this, the first term of the rightmost side of (D.25) can be written asI
C

Dv

Dt
� dr D �

I
C

r

�
p

�
C gz

�
� dr D �

�
p

�
C gz

�end
start

: (D.28)

Considering thatC is a closed curve, this is always 0, again.Thus, the circulation theorem (D.23)
holds.

D.5 POTENTIAL FLOW AND BERNOULLI’S THEOREM
If the water is at rest initially, the circulation along any closed curve in the water region is of
course zero initially. Then Kelvin’s circulation theorem guarantees that the circulation along any
closed curve in water region is zero at any later time. Considering (D.22), this means that the
vorticity ! D r � v at any point in water is 0. In such a situation, according to “Helmholtz’s
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decomposition theorem”3 in vector analysis, the velocity field v.x; t / can be expressed as v D r�,
that is, v D .u; v; w/ D .�x; �y ; �z/, with an appropriate scalar function �.x; t /. Such � is called
the velocity potential. In this way, the flow whose vorticity is 0 everywhere in the fluid domain
and the velocity vector can be expressed by a potential is called an irrotationalflow or a potential
flow.

When dealing with water waves, the change in density due to pressure is negligible, so
(D.20) holds from the conservation law of mass. Substituting v D r� into this immediately
gives the Laplace equation for �

r � .r�/ D
@2�

@x2
C
@2�

@y2
C
@2�

@z2
D 0: (D.29)

This is the field equation that the velocity potential �.x; t / should satisfy at each point in the
water region. When there is no y dependence, this equation gives (3.27a) in the system of
governing equations for water waves.

Next, substituting v D r� into the Euler equation (D.15), and using ! D 0, we can im-
mediately obtain

r

�
@�

@t
C
1

2
v2
C
p

�
C gz
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D 0; (D.30)

and by integrating this,
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�
C gz D F.t/; (D.31)

where F.t/ is an arbitrary function that depends only on time. This is called the (generalized)
Bernoulli’s theorem. Consider this equation at the water surface. If the motion of air is ignored,
the pressure at each point on the water surface is constant at atmospheric pressurep0, and if there
is no effect of surface tension, the water pressure is also equal to the atmospheric pressure p0. In
(D.31), choosing F.t/ equal to p0, and assuming that there is no y dependence, (D.31) becomes

@�

@t
C
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2
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@�

@x
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C

�
@�

@z

�2
#
C gz D 0; (D.32)

at the water surface z D �.x; t/, which is equal to the dynamic boundary condition (3.27b) with
the surface tension coefficient � D 0.

The effect of surface tension is directly linked to the curvature of the water surface. When
the space is 3D and the surface profile is expressed as z D �.x; y; t/, we need to treat the cur-
vature of surface, which would make the story somewhat complicated. So we assume here that

3According to Helmholtz’s decomposition theorem, an arbitrary vector field u.x/ can be decomposed into the form
u D r� C r � A using an appropriate scalar field �.x/ and a vector field A.x/. The first term is an irrotational vector
field, and the second term is a solenoidal (i.e., divergent-free) vector field. In this case, �.x/ and A.x/ are called the scalar
potential and the vector potential of u.x/, respectively.
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there is no y-dependence in accordance with the treatment in the main text and that the water
surface can be expressed as z D �.x; t/. Let us focus on the small line element ds on the water
surface, as shown in Fig. D.1. The surface tension acts in the tangential direction with magni-
tude of �[N] (per unit length in the y direction) at both ends A and B of ds. If the water surface

τ

τ
dθ

z = η(x)

ds

B
A

Pressure p on water side

Atmospheric Pressure p0

Figure D.1: Curvature of water surface.

is convex toward the air side as shown in the figure, a force toward the water side is generated as
a resultant of the surface tension at A and B. To balance it, the pressure p on the water side be-
comes higher than the atmospheric pressure p0, and a pressure jump �p occurs between them.
This �p is given by

�p ds D � sin.d�/ � �d� �! �p D �
d�

ds
D ��; (D.33)

where � D d�
ds

is the rate of change of the tangential direction per unit length that occurs when
moving along the water surface and is called the curvature. The inverse of � has a dimension
of length and is called the radius of curvature. When the curve is represented as z D �.x/, the
curvature � can be evaluated by

� D �
�xx

.1C �2
x/

3=2
: (D.34)

Here, the curvature is signed so that it is positive when the water surface is convex to the air
side, that is, the center of curvature is on the water side. When this extra pressure due to surface
tension is added to (D.32), the dynamic boundary condition (3.27b) is obtained.

If there is a boundary of the fluid region due to the presence of an object, etc., the fluid
cannot flow penetrating it. When the moving speed of the boundary is vw, the normal compo-
nent of velocity of the fluid must be equal to that of the boundary, i.e., v � n D vw � n must hold.
This means that at the boundary the fluid moves only in the direction along the boundary. In the
case of water waves, the water surface itself is a boundary of the fluid region, and the fluid on the
surface moves only along the surface, therefore remains to exist on the surface at the next mo-
ment. Assume that there is no y dependency and the surface waveform is given by z D �.x; t/.
If we introduce a scalar function F.x; z; t/ by F.x; z; t/ D �.x; t/ � z, F.x; z; t/ will always be
0 if we keep looking at the fluid particle on the surface, so DF=Dt D 0. This results in

DF

Dt
D
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C u
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@x
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D 0; (D.35)
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which leads to the kinematic boundary condition (3.27c). Similarly, the boundary condition
(3.27d) corresponds to the fact that the vertical component �z of flow velocity at the bottom is
0 and the water does not penetrate the bottom.

As described above, all the equations and the boundary conditions of the system of gov-
erning equations for water waves used in Chapter 3 are derived. Refer to standard textbooks,
such as [1, 3] and [2], for more systematic and detailed treatment of hydrodynamics and water
waves.
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A P P E N D I X E

Summary to Dimensional
Analysis

In Chapter 3, it was shown that the dispersion relation of water waves can be
derived (except for a dimensionless multiplicative coefficient) by simple consider-
ation based on dimensions. Also, in the derivation process of important nonlin-
ear wave equations such as the KdV equation and the NLS equation, the non-
dimensionalization of the system of basic equations and rough estimate of the mag-
nitude of each term in the equation played a very important role. In this appendix,
we summarize the basic knowledge about the dimensions of physical quantities and
the method of analysis based on them.

E.1 DIMENSION AND SI SYSTEM
In the International SystemofUnits (SI), which is the most standard unit system in the world,
the seven quantities such as length, mass, time, electric current, thermodynamic temperature,
amount of substance, and luminous intensity are treated as the most basic quantities that appear
in the laws of physics. If a quantity a represents a length, a is said to have the dimension of length,
and we write Œa� D L. Similarly, if the dimension of a is mass and time, we write Œa� DM ,
Œa� D T , respectively.1 For physical quantities other than the basic quantities, we can know their
dimensions by considering with what kind of calculations they can be derived from the basic
quantities. For example:

• Density �: Density DMass/Volume, ŒVolume� D L � L � L. Therefore, Œ�� DML�3;

• Velocity v: Velocity D Distance/Time. Therefore Œv� D LT �1;

• Force F : From Newton’s law of motion F D ma, i.e., Force DMass � Acceleration. Ac-
celeration D Change of speed/Time. Therefore Œa� D LT �2. From this, ŒF � DMLT �2;
and

• Pressure p: Since pressure is a force that works per unit area, Pressure D Force/Area.
Therefore, Œp� D ŒF �L�2 DML�1T �2, and so on.

1J. C. Maxwell, who established the fundamental system of equations of electromagnetics, is said to be the first to express
the dimension of a by Œa�.
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E.2 PHYSICAL QUANTITIES WITH INDEPENDENT
DIMENSIONS

Suppose there is a set of k physical quantities fa1; a2; : : : ; akg. For any one of them, if the
multiplication and division of the other .k � 1/ quantities cannot produce a quantity of the same
dimension, the dimension of fa1; a2; : : : ; akg is said to be independent, otherwise the dimension
is dependent. In other words, the dimension of the set fa1; a2; : : : ; akg is independent if the
equation

Œa1�
x1 Œa2�

x2 � � � Œak�
xk D 1; (E.1)

has no non-trivial solution other than the trivial solution fx1; x2; : : : ; xkg D f0; 0; : : : ; 0g, and if
the equation has non-trivial solutions, the dimension is dependent.

As an example, let’s examine whether the dimensions of density �, velocity v, and force
F are independent or not:

Œ�� DML�3; Œv� D LT �1; ŒF � DMLT �2: (E.2)

Œ��xŒv�y ŒF �z D 1 �!

8̂<̂
:
M : x C z D 0
L: � 3x C y C z D 0
T : � y � 2z D 0

�!

0@ 1 0 1

�3 1 1

0 �1 �2

1A0@xy
z

1A D 0@00
0

1A : (E.3)

This system of linear equations for x, y, z has no solution other than the trivial solution x D
y D z D 0, so the dimension of f�; v; F g are independent. This means, for example, no matter
how we multiply or divide � and v, we cannot produce a quantity with the same dimension as
F .

Then, what about density �, velocity v, and pressure p?

Œ�� DML�3; Œv� D LT �1; ŒP � DML�1T �2: (E.4)

Œ��xŒv�y Œp�z D 1 �!

8̂<̂
:
M : x C z D 0
L: � 3x C y � z D 0
T : � y � 2z D 0

�!

0@ 1 0 1

�3 1 �1

0 �1 �2

1A0@xy
z

1A D 0@00
0

1A : (E.5)

In this case, there is a non-trivial solution .x; y; z/ D .�˛;�2˛; ˛/ (˛ is arbitrary). This solution
means that �v2 has the same dimension as p.

As shown by the example above, whether or not the dimension of a set of physical quan-
tities is independent is determined by whether or not the last homogeneous system of linear
equations has a non-trivial solution. In the above two examples, the coefficient matrix becomes
a 3 � 3 square matrix. The reason why the number of columns became 3 is because the target
is a set of three physical quantities f�; v; F g or f�; v; P g, while the reason why the number of
raws became 3 is because three basic dimensions M , L, T are involved. For example, the first
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column of the coefficient matrix is the exponent of each basic dimension when the first quantity
� is expressed by multiplication of powers ofM , L, and T .

The dimension of a purely dynamical quantity that is not related to heat or electromagnetic
phenomena is composed of three basic dimensions M , L, and T . If we do the same thing as
(E.3) or (E.5) for such a set of four or more purely dynamical quantities, the number of columns
of the coefficient matrix becomes larger that the number of raws, and non-trivial solution will
always exist. Therefore a set consisting of four or more purely dynamical quantities is necessarily
dimensionally dependent, and a quantity of the same dimension as one of the physical quantities
can be created by multiplying or dividing other physical quantities.

E.3 CONVERSION OF UNIT SYSTEM
By determining one unit of the basic quantities (length, mass, etc.), the magnitude of any phys-
ical quantity can be expressed only by a single number that represents how many times the unit
quantity it is. In the International System of Units (SI), length is measured in meter (m), mass
is in kilogram (kg), time is in second (s), electric current in ampere (A), thermodynamic tem-
perature in Kelvin (K), amount of substance in mole (mol), and luminous intensity in candela
(cd) as one unit.

When converting to a new unit system in which 1 unit of mass is 1=M, 1 unit of length
is 1=L, 1 unit of time is 1=T , etc. of the original unit system, the numerical value representing
a physical quantity of dimension

Œa� DM ˛LˇT  (E.6)
becomes M˛LˇT  times the numerical value in the original unit system. For example, the
dimension of force F is MLT �2 as seen above. If we say F D 3 in the SI system, it is 3N,
that is, 3 kg m=s2. When this is converted to the CGS unit system that uses gram, cm, and
seconds as units of mass, length, and time, respectively, M D 1000, L D 100, T D 1, therefore
the numerical value of F becomes F D 3 � 105dyne, i.e., 3 � 105 g cm=s2.

The following fact is very important for the future discussion.

[Theorem 1]
Let fa1; a2; : : : ; akg be a set of k physical quantities with independent dimensions,

and let A be an arbitrary real number. Then, there exists a method of conversion of the unit
system (i.e., a new way to determine the one unit for each dimension) that changes any one
of fa1; a2; : : : ; akg to A times while keeps all other values unchanged.

Here we omit the proof,2 and instead find actually the conversion of unit system so that
only the numerical value of � is multiplied byA for the set f�; v; F gwhose dimensional indepen-
dence was confirmed above. If the new unit amount of mass, length, and time are 1=M, 1=L,
1=T of those in the current unit system, respectively, the numerical values representing f�; v; F g

2This can be proved if you have basic knowledge of linear algebra, so try it yourself.
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change to ML�3 times, LT �1times, and MLT �2times, respectively. Therefore, it suffices to
find M, L, T that satisfy

ML�3
D A; LT �1

D 1; MLT �2
D 1: (E.7)

Taking logarithms of these and setting X D logM, Y D logL, Z D logT , we obtain the re-
quired solution as follows:0@1 �3 0

0 1 �1

1 1 �2

1A0@XY
Z

1A D 0@logA
0

0

1A �! X D Y D Z D �
1

2
logA

�!M D L D T D A�1=2: (E.8)

This means that if we want only the numerical value representing � to be multiplied by 100 times
(i.e.,A D 100) while the numerical values of v andF to be unchanged, it can be achieved by con-
verting to a new unit system in which the unit amount for measuring mass, length, and time are
all 10 times the current unit system. Note that the coefficient matrix of the simultaneous linear
equations that appears here is the transpose of the coefficient matrix of the homogeneous simul-
taneous linear equations when we judged the dimensional independence of f�; v; F g. Therefore,
if the dimensions are independent, (E.8) always has a solution.

E.4 PI THEOREM
The purpose of many studies in science and engineering is to clarify the relationship between
various physical quantities contained in the target phenomenon. As an example, consider the
case of

a D f .a1; a2; a3; b1; b2/: (E.9)

Here, a1; a2; a3; b1; b2 represent the physical quantities contained in the phenomenon that can
be known or can be controlled (control parameters), while a represents the objective physical
quantity that we want to express as a function of the control parameters. We assume here that,
of the control parameters, a1; a2; a3 are physical quantities with independent dimensions, while
b1; b2 are physical quantities whose dimensions can be expressed by a combination of dimensions
of a1; a2; a3 as

Œb1� D Œa1�
p1 Œa2�

q1 Œa3�
r1 ; Œb2� D Œa1�

p2 Œa2�
q2 Œa3�

r2 : (E.10)

In the first place, the natural world does not have a special length that should be used as
a unit when measuring length. Using 1m as a unit length is only for human convenience. The
same applies to the mass, time, and all the other quantities. Therefore, the laws of the natural
world that hold regardless of the existence of human beings do not depend on the unit system.
Newton’s law of motion F D ma (Force D mass � acceleration) always holds true whether we
use SI unit or other unit system.
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If a physical law like (E.9) holds, the dimension Œa� of the objective quantity a can always

be expressed by multiplying dimensions of the dimensionally independent variables a1; a2; a3

among the control parameters like
Œa� D Œa1�

pŒa2�
qŒa3�

r : (E.11)
Otherwise, fa; a1; a2; a3g has independent dimensions, but then from the above Theorem 1,
we can arbitrarily change the value of a while keeping a1; a2; a3 all unchanged by a suitable
conversion of unit system, which means that a is not a function of a1, a2, or a3.

Let’s introduce the variables

… D
a

a
p
1 a

q
2a

r
3

; …1 D
b1

a
p1

1 a
q1

2 a
r1

3

; …2 D
b2

a
p2

1 a
q2

2 a
r2

3

; (E.12)

in (E.9). Since the dimension of the denominator of …;…1;…2 are the same as that of the
numerator, they are all dimensionless quantities, and their values do not change if the unit system
is changed. If we rewrite a; b1; b2 in (E.9) using these…;…1;…2,

… D
1

a
p
1 a

q
2a

r
3

f
�
a1; a2; a3;…1a

p1

1 a
q1

2 a
r1

3 ;…2a
p2

1 a
q2

2 a
r2

3

�
: (E.13)

The right side of this equation is a function of a1; a2; a3;…1;…2, and if we write it as
F.a1; a2; a3;…1;…2/, then

… D F.a1; a2; a3;…1;…2/: (E.14)
In (E.14), a1; a2; a3 have independent dimensions. Therefore, from Theorem 1, it is possi-

ble to change the value of a1 to an arbitrary value while keeping a2, a3 unchanged by a conversion
of the unit system. However, … on the left side is a dimensionless quantity, and the value does
not change even if this conversion of unit system is done. This means that … does not depend
on a1. For the same reason,… cannot depend on a2 or a3.

Therefore, the right side of (E.14) is a function only of…1 and…2, and it should be able
to be written like

… D ˆ.…1;…2/ (E.15)
with a certain suitable function ˆ. If we return this to the relationship between the original
quantities with dimensions, we obtain

a D a
p
1 a

q
2a

r
3ˆ

�
b1

a
p1

1 a
q1

2 a
r1

3

;
b2

a
p2

1 a
q2

2 a
r2

3

�
: (E.16)

In this example, owing to the dimensional analysis, the original problem (E.9) which requires to
deal with a function with five independent variables in order to express the relationship between
the objective variable and the control parameters has been reduced to a much simpler problem
(E.15) where we only need to deal with a function of two independent variables. The results so
far are summarized in the following Pi Theorem.3

3It is said that E. Buckingham (1914) was the first to summarize the idea of dimensional analysis in the form of this Pi
theorem. Incidentally, the name of the theorem, “Pi,” has nothing to do with the circumference ratio � .
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[Theorem 2: Pi Theorem]
The relation between an objective variable a and several control parameters a1,

a2; : : : ; ak , b1; : : : ; bm can be rewritten as a relation between the dimensionless objective
variable… which is a made dimensionless by a1, a2; : : : ; ak and the dimensionless control
variables…1; : : : ;…m which are b1; : : : ; bm made dimensionless by a1, a2; : : : ; ak .

For example, in the case of (E.9), if we want to explore the relationship between the
objective variable and the control parameters by a series of experiment or observation without
doing any prior dimensional analysis at all, what will happen? We will probably do as follows.
In order to find out the dependence of the objective variable a on the control parameter a1, we
first fix the values of the control parameters other than a1, change only a1 to various values and
measure the value of a at each time, and plot the results on a graph paper or record it as a table.
In order to see the trend, the value of a1 will need to be changed to at least 10 different values
or so. We need to repeat the same thing for the other four control parameters. Then at least 105

experiments or observations are required.
However, if the dimensional analysis is performed in advance and (E.9) has been reduced

to the relationship (E.15), the experiments can be performed while changing …1 and …2, and
we will need only 102 experiments.

In addition, there is other advantage as follows. The control parameters may contain phys-
ical quantities that are difficult to change their values, such as gravity g. It may also be difficult
and costly to build an experimental apparatus that can change all of the control parameters.
However, for (E.15), it is only necessary to change …1 and …2. We can do this by chang-
ing only the control parameters that are easy to change, without forcibly changing the control
parameters whose values are difficult to change. This will make the procedure of experiments
much simpler and the experimental apparatus much less expensive. In this way, thanks to the Pi
theorem, the amount of experiments and observations (including direct numerical simulations)
required to obtain the relationship between physical quantities can be greatly reduced, and the
experiments themselves can be made much easier.

EXAMPLE 1: DIMENSIONAL ANALYSIS FOR PHASE VELOCITY OF
SURFACE GRAVITY WAVES
The phase velocity c of the surface gravity wave should be expressed like

c D f .�; g; �; h/ (E.17)

as a function of water density �, gravitational acceleration g, wavelength �, and the water depth
h. Consider this relationship by dimensional analysis using the Pi theorem.
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[Answer]

The dimensions of the control parameters are Œ�� DML�3, Œg� D LT �2, Œ�� D L, and
Œh� D L, respectively. Choose f�; g; �g as a set of control parameters with independent di-
mensions. Then h is dimensionally dependent. The dimension of the objective variable c is
Œc� D LT �1, and the quantity with the same dimension as c in the product of f�; g; �g is

p
g�.

Therefore, the dimensionless relationship corresponding to (E.16) should be of the form4

c D
p
g�ˆ.h=�/: (E.18)

This is all that we can do with dimensional analysis alone. After this, if we repeat experiments
while changing the value of h=� to determine the one-variable function ˆ.x/, then we can
obtain information equivalent to the original relationship (E.17) which contains a function of
four independent variables.

|
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E.5 DRAG ON AN OBJECT BY DIMENSIONAL ANALYSIS
As an example of dimensional analysis, let us consider the drag experienced by a sphere moving
in a fluid at a constant speed.

If we want to approach this problem seriously starting from the basic equation, we will
need to solve the boundary value problem of the Navier–Stokes equation

vt C .v � r/v D �
1

�
rp C

�

�
r

2v; (E.19)

which is the equation of motion of fluid dynamics. Especially when the velocity of the sphere is
high, the flow around it becomes a very irregular and unsteady flow in a turbulent state, and it
is totally impossible to solve this equation analytically. It is not easy to do numerical simulation
either even using a state-of-the-art computer.

The dimensional analysis for this problem becomes as follows. The factors that may affect
the dragF experienced by the sphere include the diameter d and the velocityU of the sphere, the
density � and the viscosity coefficient � of the fluid through which the sphere moves. Therefore,
the goal is to find a relationship like

F D f .d; U; �; �/: (E.20)

The dimensions of the relevant quantities are ŒF � DMLT �2, Œd � D L, ŒU � D LT �1, and Œ�� D
ML�3. For the dimension of �, some explanation may be necessary. In fluid dynamics, the
force acting in a fluid is expressed by the quantity “stress.” Stress � is a force acting per unit

4As obtained in Chapter 3, the correct relationship is c D
p

g�

r
1

2�
tanh

�
2�h

�

�
.
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area, so its dimension is the same as pressure and is given by Œ� � DML�1T �2. Due to the
property called “viscosity” of the fluid, if the flow velocity is not uniform, the fast fluid will
drag the slow fluid and accelerate it, and conversely, the slow fluid will pull back the fast fluid
and decelerate it. In ordinary fluids, the stress caused by this viscosity is considered to be di-
rectly proportional to the velocity gradient, and the proportionality factor is called the viscosity
coefficient �. Since the dimension of velocity gradient is Œv�=L D T �1, the dimension of �
is Œ�� D Œstress�=Œvelocity gradient� DML�1T �2=T �1 DML�1T �1. The fact that � has such a
dimension can also be confirmed from the consistency of the dimensions of each term in (E.19).

In (E.20), fd;U; �g of the control parameters have independent dimensions, and the di-
mension of � can be expressed as Œ�� D Œd U��. Also, the dimension ŒF � of the objective variable
F can be expressed by fd;U; �g as ŒF � D Œd2U 2��.5 Then, according to the Pi theorem, the di-
mensionless objective variable … D F=.d2U 2�/ is a function only of the dimensionless control
parameter…1 D �=.dU�/, so F can be expressed as

F D d2U 2� �ˆ

�
�

dU�

�
(E.21)

by an appropriate one-variable function ˆ.
Incidentally, the reciprocal Re D �Ud=� of the dimensionless control parameter…1 that

appears here is called the Reynoldsnumber, and is the most important dimensionless parameter
in fluid dynamics. Reynolds number physically represents the ratio of inertial force to viscous
force acting on the fluid, and the viscosity effect becomes more important as Re becomes smaller.
In the same fluid, the larger the object and the faster the movement, the greater the Reynolds
number.

As an example, let us estimate Re of the fastball of the baseball. Let the diameter be
d � 0:072 (m) and the ball speed be 150 (km/h), i.e., U � 42 (m/s). For air, � D 1:2 (kg/m3)
and � D 1:8 � 10�5 (kg/m s). Then, Re � 2 � 105. This indicates that the effect of viscosity on
the motion of the ball is about 10�5 times smaller than that of inertial force.

For motions where Re is sufficiently large, the effect of viscosity is considered to be negli-
gible, and the drag on the sphere in such a situation may not depend on the viscosity coefficient
�. According to the dimensional analysis (E.21), in order for F to be independent of �,ˆmust
be a constant function. If this is the case, at high Reynolds numbers, the drag F is expected to
behave like

F D ˛�d2U 2; .˛ W dimensionless constant/ (E.22)
implying that the drag is expected to be proportional to the square of the diameter of the sphere
and the square of the speed of the sphere. This is known as Newton’s law of resistance.

On the other hand, as an example of low Re, let us consider a case where a small plankton
with a body length of 100 (�m) is swimming in water at a speed of 100 (�m/s). Then, d D
1 � 10�4 (m) and U D 1 � 10�4 (m/s). For water, � D 1 � 103 (kg/m3) and � D 1:0 � 10�3

5Speaking with (E.9), fd; U; �g correspond to fa1; a2; a3g, and � corresponds to b1. (b2 does not exist.)
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(kg/m s). Therefore, Re � 10�2, that is, in this case, the effect of inertia is only 1/100 compared
to the effect of viscosity. For the motion corresponding to such a small Reynolds number, the
influence of fluid inertia is considered to be negligible compared to that of viscosity. The physical
quantity that expresses inertia is mass, and it is � that reflects it in the present problem. (E.21)
is not affected by inertia, that is, F does not include � only when ˆ.x/ D ˇx, then (E.21) gives

F D ˇ �U d: .ˇ W dimensionless constant/ (E.23)

This is know as the Stokes’ law of resistance.6
Figure E.1 shows the relationship between the drag coefficient CD defined by CD D

F=1
2
�U 2.�d2=4/ and Re as a logarithm plot. The part where CD is approximately proportional

to 1=Re in the region of Re < 1 corresponds to Stokes’ law of resistance, and the part around
103 < Re < 105 where CD is almost flat corresponds to the Newton’s law of Resistance. Both
Newton’s law of resistance (E.22) at high Re and Stokes’ law of resistance at low Re are very use-
ful laws that give important information. What is used to obtain these laws is only dimensional
considerations, and does not use the difficult governing equation (E.19) at all. The advantage of
dimensional analysis is in the fact that it can be used when a phenomenon is too complex and
we do not even know the equation that governs it.
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Figure E.1: Dependence of drag coefficient CD of a sphere on Re.

For more information on the overall contents of this Appendix, see, for example, [1–3].
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A P P E N D I X F

Derivation of the KdV
Equation for Water Waves
In Chapter 5, the KdV equation was derived by an intuitive method of simply

attaching the third derivative term uxxx for expressing the dispersive character of
the long-wavelength water waves to the nonlinear but non-dispersive wave equation
derived by the “simple wave” theory explained in Appendix B. In this appendix, the
KdV equation is derived more systematically by the perturbation method with the
depth-to-wavelength ratio h=� and amplitude-to-depth ratio a=h as small parame-
ters. In the process of derivation, the long wave equation (B.3) will also be derived
automatically.

F.1 THE BASIC EQUATIONS
Here, we show how to derive the long water wave equation (B.3) and the KdV equation (5.5)
from the basic governing equations for surface water waves by a systematic method using per-
turbation expansion. The system of basic equations for surface water waves is given by

�xx C �zz D 0; � h � z � �.x; t/ (F.1a)

�t C gz C
1

2

�
�2

x C �
2
z

�
D 0; z D �.x; t/ (F.1b)

�t C �x�x D �z; z D �.x; t/ (F.1c)
�z D 0; z D �h; (F.1d)

as shown in Chapter 3.1 The effect of surface tension is ignored here.
In the situation where the wavelength is very long compared to the water depth, there are

various terms in the fundamental equations that are large and important or small and negligi-
ble. There is a method called non-dimensionalization as a conventional means used to know
the rough relation between magnitude of each term as follows. First, for each variable, a “rep-
resentative value” is introduced. For the horizontal coordinate x, the wavelength � of the target
wave, for the vertical coordinate z, the quiescent water depth h, for time t , the time required to
propagate one wavelength � at the typical propagation speed of long wave

p
gh, i.e., �=

p
gh,

and for �, the wave amplitude a are used as representative values, respectively. Considering that

1See Appendix D for their derivation.
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the velocity of water particles is about
p
gh � �=h, the reasonable choice for the representative

value of the velocity potential � will be
p
gh a�=h.

Then introduce dimensionless variables by dividing each of the original variables by the
corresponding representative values as follows:

Qx D x=�; Qz D z=h; Qt D t=
�
�
ıp

gh
�
D
p
gh t=�; (F.2a)

Q� D �=a; Q� D �
ı��a

h

p
gh

�
: (F.2b)

Since each variable is divided by its representative value, the magnitudes of all the dimensionless
variables (shown with Q) can be considered as O.1/.

Rewriting (F.1) using these dimensionless variables gives

� Q� Qx Qx C Q�Qz Qz D 0; � 1 � Qz � � Q� (F.3a)
�
�
Q�Qt C Q�

�
C
�

2

n
�
�
Q� Qx

�2
C
�
Q�Qz

�2o
D 0; Qz D � Q� (F.3b)

�
�
Q�Qt C � Q� Qx Q� Qx

�
D Q�Qz; Qz D � Q� (F.3c)

Q�Qz D 0; Qz D �1; (F.3d)

where � and � are dimensionless parameters defined by

� D h2=�2; � D a=h: (F.4)

The situation of long wave (i.e., shallow water waves) whose wavelength is very long compared
to the water depth corresponds to �� 1, while the situation where the amplitude of the wave
is very small compared to the water depth and hence is close to linear corresponds to � � 1.

The most important point of this non-dimensionalization is that the quantities with Q
are all O.1/ including their derivatives, so that all the magnitude relationships of terms in the
equations are expressed explicitly in the coefficients. For example, in the long wave situation
(�� 1), we can see at a glance that the first term on the left side of the Laplace equation (F.1a)
is much smaller than the second term by looking at its dimensionless version (F.3a).

F.2 DERIVATION OF LONG WAVE EQUATION
Since there is no worry of confusion, we will omit the tilde (Q) indicating a dimensionless quan-
tity. First, express � in terms of a power series with respect to z around the bottom z D �1 as
follows2:

�.x; z; t/ D

1X
nD0

.z C 1/n �n.x; t/; (F.5)

2Since the water depth is very shallow compared to the wavelength, it can be said that all the water region including the
water surface is close to the bottom from the viewpoint of the wave. This leads to the idea of “expanding around the bottom.”



F.2. DERIVATION OF LONG WAVE EQUATION 219
where �1.x; t/ D 0 from (F.3d).

Differentiating (F.5) term by term gives

�z D

1X
nD1

n.z C 1/n�1 �n D

1X
nD0

.nC 1/.z C 1/n �nC1; (F.6a)

�zz D

1X
nD1

n.nC 1/.z C 1/n�1 �nC1 D

1X
nD0

.nC 2/.nC 1/.z C 1/n �nC2; (F.6b)

�x D

1X
nD0

.z C 1/n �n;x; (F.6c)

�xx D

1X
nD0

.z C 1/n �n;xx; (F.6d)

where the subscripts x such as �n;x represents the partial derivative with respect to x.
Substituting (F.6b) and (F.6d) into (F.3a),

�

1X
nD0

.z C 1/n �n;xx C

1X
nD0

.nC 2/.nC 1/.z C 1/n �nC2 D 0: (F.7)

so
�nC2 D �

�

.nC 2/.nC 1/
�n;xx .n D 0; 1; � � � /: (F.8)

Immediately from this and �1 D 0, we obtain

�3 D �5 D � � � D 0: (F.9)

Equation (F.8) gives
�2 D �

�

2
�0;xx; (F.10)

for n D 0 and
�4 D �

�

4 � 3
�2;xx D

�2

4Š
�0;xxxx; (F.11)

for n D 2.3 This gives

� D �0 �
�

2
.z C 1/2�0;xx C

�2

4Š
.z C 1/4�0;xxxx CO.�

3/; (F.12)

as the expression of �.x; z; t/ which is correct up to O.�2/.

3In general, �2m D O.�m/ from (F.8).
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Substituting this result into the boundary conditions (F.3c) and (F.3b) yields

�t C ��0;x�x C .1C ��/�0;xx D
1

2
��.1C ��/2�0;xxx�x C

1

6
�.1C ��/3�0;xxxx CO.�

2/;

(F.13a)

�0;t C �C
�

2
.�0;x/

2
D
1

2
�.1C ��/2

n
�0;xxt C ��0;x�0;xxx � � .�0;xx/

2
o
CO.�2/: (F.13b)

If we consider the long wave limit �! 0 and ignore all terms including �, we obtain

�t C ��0;x�x C .1C ��/�0;xx D 0; (F.14a)
�0;t C �C

�

2
.�0;x/

2
D 0: (F.14b)

Here, if we write �0;x.x; t/ (i.e., the flow velocity at the bottom) as u.x; t/ and return to the
original variables with dimensions, we obtain

�t C u�x C .hC �/ux D 0; (F.15a)
ut C uux C g�x D 0; (F.15b)

which is the long wave equation (B.3). Thus, the derivation of the long wave equation assumes
that the water depth is very shallow compared to the wavelength (� D

p
h=�! 0). However,

no assumption is made about �, so the long wave equation holds even if the situation is not close
to linear. Such a framework with �! 0, � D O.1/ is called the Airy theory. The dispersive
character of water wave is not reflected in this theory.

F.3 DERIVATION OF THE KDV EQUATION
In (F.13a) and (F.13b), retaining terms with � leads to inclusion of the effect of dispersion, and
retaining terms with � leads to inclusion of the effect of nonlinearity. It is difficult to capture
both effects completely, so we aim at capturing only the minimum part of them. Specifically,
considering � and � to be small parameters of the same order of magnitude, and taking only the
first order terms with respect to them in (F.13a) and (F.13b), then we obtain

�t C ��0;x�x C .1C ��/�0;xx D
�

6
�0;xxxx; (F.16a)

�0;t C �C
�

2
.�0;x/

2
D
�

2
�0;xxt : (F.16b)

If we write the flow velocity �0;x.x; t/ at the bottom as u.x; t/ as before,

�t C �u�x C .1C ��/ux �
�

6
uxxx D 0; (F.17a)

ut C �x C �uux �
�

2
uxxt D 0: (F.17b)
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The theory that incorporates the lowest order effects of both dispersion and nonlinearity in this
way is called the Boussinesq theory.

Since the z-dependence of the horizontal velocity is taken into account in the Boussinesq
theory, the average flow velocity U is often used as the representative velocity instead of the flow
velocity at the bottom. Differentiating (F.12) with respect to x,

�x D �0;x �
�

2
.z C 1/2�0;xxx CO.�

2/ D u �
�

2
.z C 1/2uxx CO.�

2/: (F.18)

From this we find that the average velocity U is expressed in terms of u as

U D
1

1C ��

Z ��

�1

�x dz D u �
�

6
.1C ��/2uxx CO.�

2/; (F.19)

from which u is given in terms of U as follows:

u D U C
�

6
.1C ��/2Uxx CO.�

2/: (F.20)

Substituting this expression for u into (F.17a) and (F.17b) yields,

�t C Ux C �U�x C ��Ux D 0; (F.21a)
Ut C �x C �UUx �

�

3
Uxxt D 0; (F.21b)

which is rewritten as

�t C hUx C U�x C �Ux D 0; (F.22a)

Ut C g�x C UUx �
h2

3
Uxxt D 0; (F.22b)

in terms of variables with dimensions. This set of equations is called the Boussinesq equation.
By simplifying the Boussinesq equation by focusing onwaves propagating in one direction,

we can derive the KdV equations as follows. For the lowest-order approximation with � D � D
0, (F.21) becomes

�t C Ux D 0; Ut C �x D 0: (F.23)

Differentiating the first and the second equations with respect to t and x, respectively, and taking
the difference, we obtain

�t t � �xx D 0; Ut t � Uxx D 0: (F.24)

Thus, in this approximation both �.x; t/ andU.x; t/ satisfy the well-knownwave equation (F.24)
and can be expressed as the sum of waves that translate left and right with the speed of ˙1 like

�.x; t/ D fC.x � t /C f�.x C t/; (F.25)
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with the corresponding U.x; t/ which is linked to this �.x; t/ by (F.23), where fC, f� are ar-
bitrary functions. Therefore, if we focus only on the wave traveling in the positive x direction,
�.x; t/ and U.x; t/ satisfy

�t C �x D 0; Ut C Ux D 0: (F.26)

When compared with (F.23), this implies that, at the lowest-order approximation in � and �,
both � and U translate in the positive x direction with speed 1 and that � D U .

The presence of terms of O.�/ and O.�/ in (F.21) introduces deviations from this simple
translation. Because the cause of the deviation is the small terms of O.�/ and O.�/, the time
scale for this deviation to occur is expected to be about O.1=�/. So, we introduce a new time
variable � D �t to treat this long time.4 Since it is close to a translation with speed 1, we also
introduce � D x � t as a new space variable. Rewriting (F.21) by using the chain rule of partial
differentiation,

@

@t
D

@

@�

@�

@t
C

@

@�

@�

@t
D �

@

@�
C �

@

@�
;

@

@x
D

@

@�

@�

@x
C

@

@�

@�

@x
D

@

@�
; (F.27)

we obtain

� �� C ��� C U� C �U�� C ��U� D 0; (F.28a)
� U� C �U� C �� C �UU� C

�

3
U��� �

��

3
U��� D 0: (F.28b)

Here, ignoring O.��/ and considering that the exchange of U and � is allowed in the terms of
O.�; �/, we obtain by adding the two equations:

��� C
3

2
���� C

�

6
���� D 0: (F.29)

Rewriting this in terms of x and t by

@

@�
D
1

�

�
@

@t
C

@

@x

�
;

@

@�
D

@

@x
; (F.30)

we obtain the dimensionless form of the KdV equation:

�t C �x C
3

2
���x C

�

6
�xxx D 0: (F.31)

Remembering that �, x, and t here are actually Q�, Qx, and Qt introduced in (F.2), and substituting
the definition (F.4) of � and �, we finally obtain the original KdV equation exactly the same as
(5.7).

For more information on the subject of this Appendix, see, for example, [1, 2] and [3].

4Refer to Section 4.4 for more details on this idea of multiple scales.
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A P P E N D I X G

FPU Recurrence and the KdV
Equation

As mentioned in the footnote of Section 5.3.1, in the background of the numer-
ical study of the KdV equation by Zabusky and Kruskal (1965), there was not only
an interest as a water wave problem but also an awareness of a much bigger and fun-
damental problem related to the nonlinear science in general. In this appendix, we
will introduce the motivation behind the study of Zabusky and Kruskal, while taking
up the general properties of linear oscillation systems the unexpected phenomenon
known as the “Fermi–Pasta–Ulam recurrence” appearing in numerical simulations
of 1D nonlinear lattice systems, and the relationship between 1D nonlinear lattice
systems and the KdV equation.

G.1 NORMAL MODE OF OSCILLATION

Let us consider the motion of a system in which two weights of mass m are connected by three
identical springs with the spring constant k, as shown in Fig. G.1. It is assumed that the spring is

k k

x1 (t) x2 (t)

k
m m

Figure G.1: A coupled system of mass and spring.

a linear spring for which the usual Hooke’s law holds, and the potential energy when the spring
is stretched by x is given by 1

2
kx2. If the displacements of the weights from the equilibrium

position at time t are x1.t/ and x2.t/, respectively, the kinetic energy T and the potential energy
V are given, respectively, by

T D
1

2
m Px2

1 C
1

2
m Px2

2 ; V D
1

2
kx2

1 C
1

2
k.x2 � x1/

2
C
1

2
kx2

2 : (G.1)
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The Lagrangian L is defined by L D T � V , and corresponding Euler’s equation of motion for
x1 and x2 are given by

x1 W
d

dt

�
@L

@ Px1

�
�
@L

@x1

D 0 �! m Rx1 D �2kx1 C kx2; (G.2a)

x2 W
d

dt

�
@L

@ Px2

�
�
@L

@x2

D 0 �! m Rx2 D �kx1 � 2kx2: (G.2b)

Since x1 and x2 are not separated, we need to solve the simultaneous differential equations.
Although the reason is not explained in detail here, let us introduce the new variables �1

and �2 by

�1 D

r
m

2
.x1 C x2/; �2 D

r
m

2
.x1 � x2/: (G.3)

Then
x1 D

1
p
2m

.�1 C �2/ x2 D
1
p
2m

.�1 � �2/: (G.4)

Inserting these into (G.1), then T and V can be expressed as a sum of squares in terms of �1 and
�2 as follows:

T D
1

2

�
P�2
1 C
P�2
2

�
; V D

1

2

�
k

m
�2

1 C
3k

m
�2

2

�
: (G.5)

As a result, Euler’s equation of motion becomes

�1 W
d

dt

 
@L

@ P�1

!
�
@L

@�1

D 0 �! R�1 C !
2
1�1 D 0; !1 D

r
k

m
; (G.6a)

�2 W
d

dt

 
@L

@ P�2

!
�
@L

@�2

D 0 �! R�2 C !
2
2�2 D 0: !2 D

r
3k

m
: (G.6b)

Therefore, the motion of this coupled system of weights and springs, which looks like a com-
plex motion in which the whole system is linked when it is described using intuitive coordinates
.x1; x2/, can be separated into the sum of two independent harmonic oscillations with frequen-
cies !1 and !2 by describing them using the new coordinates .�1; �2/.

The form of motion in which the whole system oscillates at a single frequency like (G.6) is
called the normalmodeofoscillation of the system, and the coordinates .�1; �2/ used to separate
into the normal modes is called the normal coordinate. In the case of the above example, for the
normal mode represented by �1 (i.e., �2 D 0), x1.t/ D x2.t/, that is the displacement of weight
1 and weight 2 are always equal as shown in Fig. G.2a in which the central spring does not
expand or contract. On the other hand, the normalmode represented by �2 (i.e., �1 D 0), x1.t/ D

�x2.t/, and represents the form of motion in which the displacement of weight 1 and weight
2 are antisymmetric as shown in Fig. G.2b, and the central spring expands and contracts twice
the springs on both sides, so that the restoring force against displacement is substantially tripled
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t

x1 x2

t
(a) (b)

Figure G.2: Two normal modes of oscillation of the coupled system.

(hence !2 D
p
3!1). If the springs are linear obeying Hooke’s law, the situation is essentially the

same even when the number of weights is N , and there are N normal modes of oscillation with
different frequencies and different mutual relationships of the displacement of each weight. And
the general motion of the system is expressed by a linear combination of these normal modes of
oscillation.

According to the general theory for small oscillation (linear theory) around the equilib-
rium point,1 if xi .i D 1; : : : ; n/ are the generalized coordinates representing the deviation from
the equilibrium point, the kinetic energy T and the potential energy V are expressed as quadratic
forms in Px and x, respectively, as

T D
1

2

nX
iD1

nX
j D1

mij Pxi Pxj D
1

2
. Px;M Px/ ; V D

1

2

nX
iD1

nX
j D1

wijxixj D
1

2
.x;W x/ ; (G.7)

where M D mij is a positive definite real symmetric matrix called inertia matrix, and W D
wij is a non-negative real symmetric matrix called stiffness matrix. Unless M and W are both
diagonal, all of xi will be interconnected in the equations of motion as in (G.2).

However, it is known that there is always a set of normal variables �i .i D 1; : : : ; n/ ob-
tained by an appropriate linear transform from xi .i D 1; : : : ; n/ such that M and W can be
diagonalized simultaneously when they are expressed in terms of �i , and as a result, the La-
grangian can be expressed as a sum of squares of the normal variables like

L D T � V D
1

2

nX
iD1

P�i
2
�
1

2

nX
iD1

!2
i �i

2: (G.8)

Then, the set of Euler’s equations of motion derived from this Lagrangian is separated into n
independent equations containing only one coordinate �i such as

d

dt

 
@L

@ P�i

!
�
@L

@�i

D 0 �! R�i C !
2
i �i D 0 .i D 1; � � � ; n/: (G.9)

1For more detail, see for example Chapter 6 of [3].
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Thus, there are normal modes of oscillation in linear dynamical systems, and general motion of
the system is given simply by a superposition of these normal modes. As indicated by (G.9),
there is no interaction between normal modes, so if only one normal mode is excited initially,
the normal mode will last forever, and no other normal modes will appear.

G.2 FPU RECURRENCE
The main object of thermodynamics and statistical mechanics is a thermal equilibrium state in
which all the normal modes of the system are equally excited, and energy proportional to the
absolute temperature is equally distributed to each normal mode oscillation. For example, it is an
empirical fact that even if only a certain part of a material is heated or only a certain normal mode
is excited initially, it will settle into such a thermal equilibrium state as time elapses. However,
as described above, in the linear system, each normal mode behaves independently, so that no
matter how much time passes, the system does not shift to a thermal equilibrium. Therefore,
it is inferred that the driving force that allows the interaction (exchange of energy) between
the normal modes and drives the entire system toward the thermal equilibrium should be the
nonlinearity of the system.

For example, in the case of the coupled system with two weights connected with three
springs as mentioned above, if the spring has a nonlinearity such that the potential energy is
expressed by 1

2
kx2 � ˛x3 instead of 1

2
kx2, the Lagrangian L expressed in terms of the normal

variables �1, �2 becomes

L D
1

2

�
P�2
1 C
P�2
2

�
�
1

2

�
!2

1�
2
1 C !

2
2�

2
2

�
C

3˛
p
2m3

.�2
1�2 � �

3
2/: (G.10)

Therefore, the Euler equations of motion change from (G.6) to the following form:

R�1 C !
2
1�1 D

6˛
p
2m3

�1�2; R�2 C !
2
2�1 D

3˛
p
2m3

.�2
1 � 3�

2
2/; (G.11)

and interactions between normal modes occur.
With this sort of awareness of problems, Fermi et al. (1955) [2] performed a series of

numerical simulations of a 1D nonlinear lattice using an electronic computer called MANIAC
that was just created. They considered a system in which up to 64 point masses are connected by
a nonlinear spring that has a linear restoring force proportional to the first power of expansion
(Hooke’s law) as well as a restoring force proportional to the square or the third power of expan-
sion, and traced the temporal evolution of the system numerically. At the initial time, they gave
energy only to the normal mode that has the lowest frequency (the mode no.1 in Fig. G.3).

Figure G.3 shows the results of a numerical simulation similar to what they did. The
horizontal and the vertical axises represent the time and the energy of each normal mode, re-
spectively. In the early stage of evolution, it can be seen that, as they expected, normal modes
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Figure G.3: FPU recurrence phenomenon.

other than no.1 are also excited due the interaction between the normal modes. However, con-
trary to their expectation that, after some sufficiently long time, the system would reach a ther-
mal equilibrium in which all the normal modes were equally excited, the normal modes which
are involved in energy redistribution process are limited to a relatively small number of modes
with lower frequencies. Moreover, after a certain period of time, they observed a completely
unexpected phenomenon to occur that almost all energy returned to the mode No.1 that was
excited initially. This phenomenon is called Fermi–Pasta–Ulam recurrence, or FPU recurrence
for short.2

In the course of research for the elucidation of this unexpected phenomenon that ther-
mal equilibration does not necessarily occur even if the system has nonlinearity, Zabusky and
Kruskal, who focused on the correspondence between the nonlinear lattice and the KdV equa-
tion as shown below, undertook the numerical study of the KdV equation.

G.3 DERIVATION OF THE KDV EQUATION FOR
NONLINEAR LATTICE

The normal modes that are mainly excited in FPU recurrence phenomenon are those modes
with a small mode number, that is, an oscillation with a long wavelength compared to the lattice
spacing ı. Focusing on these modes, the original equation of motion, which is a set of n ordinary
differential equations, can be approximated by one partial differential equation as shown below.

Let yi .t/ be the deviation from the equilibrium position of the i th particle at time t .
We assume that the spring has a weak nonlinearity and that the restoring force F is given by
F D �k.y C  y2/, where k is the spring constant. The effect of nonlinearity is weak, so we

2The authors of the paper reporting the results of this study were three researchers, Fermi, Pasta, and Ulam. However,
the realization of this research seems to have been greatly contributed by Mary Tsingou, a female researcher who developed
the numerical algorithm and performed numerical simulations using an early-time computer. For this reason, in recent years
it is sometimes called the “Fermi–Pasta–Ulam–Tsingou problem” with adding her name [1].
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assume that  y � 1. Then the equation of motion for the i th particle is given by

m Ryi D k
h
.yiC1 � yi /C  .yiC1 � yi /

2
i
� k

h
.yi � yi�1/C  .yi � yi�1/

2
i
: (G.12)

Regarding the coordinate x D iı as a continuous variable and the displacement y as a function
of x, and Taylor expanding y.x/ around the equilibrium position x D iı of the i th particle, we
obtain
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Inserting (G.13) into (G.12) yields
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and as an approximation we obtains

yt t D c
2
0

�
yxx C 2ıyxyxx C

ı2

12
yxxxx

�
; c2

0 D
k

m
ı2: (G.15)

where c0 gives the propagation velocity of the long-wave longitudinal wave traveling through
this lattice system, when ignoring the effect of nonlinearity. If we employ the wavelength �, the
amplitude a, and �=c0 as the representative values of x, y, and t , respectively, the magnitude of
each term on the right side of (G.15) relative to the left side is O.1/, O..a/.ı=�//, O..ı=�/2/
in the order from the first term. The assumption of weak nonlinearity corresponds to a� 1,
and the long-wave approximation corresponds to ı=�� 1. Assuming that a � ı=�.D �/, the
last two terms on the right side are higher-order terms of O.�2/.

Neglecting the higher order terms, (G.15) becomes the wave equation yt t D c
2
0 yxx ,

whose general solution is given by the d’Alembert solution y.x; t/ D f .x � c0t /C g.x C c0t/,
where f and g are arbitrary functions. By focusing only on the wave that propagates to the pos-
itive x direction, we can make (G.15) simpler. The solution of (G.15) translates at the speed of
c0 in the lowest order approximation, but is expected to deform slowly on a time scale of ��2 due
to the existence of the terms of O.�2/. Reflecting this, we introduce new variables � D x � c0t

and � D �2t . Then,
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Inserting this to (G.15) gives

�4y�� � 2�
2c0y�� C c

2
0y�� D c

2
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�
y�� C 2ıy�y�� C

ı2

12
y����

�
: (G.17)

If we neglect O.�4/ here and rewrite y� as u, we obtain

�2u� C c0ıuu� C
c0ı

2

24
u��� D 0; (G.18)

which gives the following KdV equation when written in the original coordinates x, t ,

ut C c0ux C ˛uux C ˇuxxx D 0; ˛ D c0ı; ˇ D
c0ı

2

24
: (G.19)

In this way, the set of equations of motion (G.12) of the nonlinear lattice can be approximated
by the KdV equation if the wavelength of the motion is long relative to the lattice spacing ı and
the effect of nonlinearity is weak.
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independence of, 208
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dispersion relation of water wave, 52
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dispersive wave, 37
divergence theorem, 183
domain of dependence, 188

energy balance equation, 168
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Euler equation, 201
explosive instability, 149

four-wave interaction equation, 158
Fourier analysis
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Fourier transform, 197
Fourier’s integral theorem, 197
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group velocity dispersion, 120
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Hirota’s direct method, 93
Hopf–Cole transformation, 26
hyperbolic quasi-linear PDE, 186

incompressible fluid, 202
individual wave, 164
inertial subrange, 173
irrotational flow, 204

KdV equation, 82
derivation by multiple scale method, 222
for nonlinear lattice, 231
intuitive derivation of, 81
inverse scattering method, 89
numerical scheme, 93
solitary wave solution, 82
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soliton interaction, 91

Kelvin’s circulation theorem, 202
Kolmogorov spectrum

fluid dynamic turbulence, 173
ocean wave turbulence, 176

KP equation, 97

Lagrangian derivative, 202
least-square method, 12
Leibniz rule, 17
linear dispersion relation, 36

for water wave, 43
linear Schrödinger equation, 119
linear sinusoidal wave solution, 35

for water wave, 43
linearization, 38
long-wave short-wave resonance, 154

Manley–Rowe relations, 148
material derivative, 202
modified KdV equation, 97
modulated wavetrain, 105
modulational instability, 134

intuitive understanding of, 136
multiple scale method, 73
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Navier–Stokes equation, 22
negative energy wave, 149
Newton’s method, 48
NLS equation

breather solution, 131
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Galilean invariance, 129

non-secular condition, 75, 126
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nonlinear Schrödinger equation, see NLS

equation
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parametric excitation, 152
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perturbation method, 66
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Pi theorem, 211
Pierson-Moskowitz spectrum, 163
pitch-drop experiment, 77
potential flow, 204

quasi-linear PDE, 185
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range of influence, 188
Rankine–Hugoniot condition, 18
Rayleigh distribution, 165
resonance

forced oscillation, 72
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four-wave, 158
three-wave, 144

Riemann invariant, 189

secular term, 70
shock fitting, 16
SI, 207
sideband instability, see modulational

instability
significant wave height, 165
simple wave, 191
simplest wave equation

linear, 7
nonlinear, 8

SMB method, 177
spatial waveform, 35, 113
stability, 132
surface tension, 205
swell, 117

temporal waveform, 36, 113
three-wave interaction equation, 148
three-wave resonance, 144
traffic flow, 5, 11, 18, 22
turbulence, 170

vorticity, 201

water wave
deep water limit, 45
energy, 53
energy flux, 56
energy propagation velocity, 57
governing equations, 41
gravity wave, 44
linear dispersion relation, 43
linear sinusoidal wave solution, 43
linearized governing equations, 42
long wave equation, 186

derivation, 220
motion of water particle, 50
refraction, 46
shallow water limit, 46
Stokes wave, 61
validity of linear theory, 59

wave turbulence, 161
wavelength, 35
wavenumber, 35
Whitham equation, 99
Wilton’s ripple, 156

zero-crossing method, 164
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